Vol. 62
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-11-06
Analysis of the Influence of Asymmetric Grid on Synchronous Hydro Generator
By
Progress In Electromagnetics Research M, Vol. 62, 29-40, 2017
Abstract
In order to analyze the influence of three-phase asymmetrical operation of a generator on its stable operation, firstly, taking a 24-MW bulb turbine generator as an example, the 2-D transient electromagnetic field model is established. Through the comparison analysis of the experimental results and simulation data, the correctness of the model is verified. Secondly, the values of air gap flux density, torque and loss in different conditions are obtained by using the finite element method. The effects of asymmetric three-phase current on air gap flux density, torque and loss are determined. Thirdly, the corresponding relationships between the three-phase current unbalance degree and torque ripple, eddy current loss are established, and the variations of torque ripple and eddy current loss are given when the three-phase current unbalance degree is changed. The result shows that the asymmetry three-phase current makes the torque ripple and eddy current loss increase dramatically, which seriously threaten the safe and stable operation of the generator. Finally, the further study on the torque ripple and eddy current loss of the generator under different current distributions and the same three-phase unbalance degree identifies that the content of negative sequence current is a key factor to affect the torque ripple and eddy current loss.
Citation
Hongbo Qiu, Xiaobin Fan, Jianqin Feng, and Cunxiang Yang, "Analysis of the Influence of Asymmetric Grid on Synchronous Hydro Generator," Progress In Electromagnetics Research M, Vol. 62, 29-40, 2017.
doi:10.2528/PIERM17081602
References

1. Pei, X. J., W. Zhou, and Y. Kang, "Analysis and calculation of DC-link current and voltage ripples for three-phase inverter with unbalanced load," IEEE Trans. Power Electron., Vol. 30, No. 10, 5401-5412, Oct. 2015.
doi:10.1109/TPEL.2014.2375353

2. Sezgin, E., M. Göl, and Ö. Salor, "State-estimation-based determination of harmonic current contributions of iron and steel plants supplied from PCC," IEEE Trans. Ind. Appl., Vol. 52, No. 3, 2654-2663, Dec. 2016.
doi:10.1109/TIA.2016.2521598

3. Vijayan, V. and S. Ashok, "High-performance bi-directional Z-source inverter for locomotive drive application," IET Electr. Syst. Transp., Vol. 5, No. 4, 166-174, Dec. 2015.
doi:10.1049/iet-est.2014.0053

4. Mwasilu, F., J. J. Justo, K. S. Ro, and J. W. Jung, "Improvement of dynamic performance of doubly fed induction generator-based wind turbine power system under an unbalanced grid voltage condition," IET Renew Power Gener., Vol. 6, No. 6, 424-434, Nov. 2012.
doi:10.1049/iet-rpg.2012.0110

5. Yan, R. and T. K. Saha, "Investigation of voltage imbalance due to distribution network unbalanced line configurations and load levels," IEEE Trans. Power Del., Vol. 28, No. 2, 1829-1838, May 2013.
doi:10.1109/TPWRS.2012.2225849

6. Woolley, N. C. and J. V. Milanovic, "Statistical estimation of the source and level of voltage unbalance in distribution networks," IEEE Trans. Power Del., Vol. 27, No. 3, 1450-1460, Jul. 2012.
doi:10.1109/TPWRD.2012.2195230

7. Esfahani, M. T. and B. Vahidi, "A new stochastic model of electric arc furnace based on hidden markov model: A study of its effects on the power system," IEEE Trans. Power Del., Vol. 27, No. 4, 1893-1901, Oct. 2012.
doi:10.1109/TPWRD.2012.2206408

8. Song, H. B. and Z. G. Li, "Alteration of cognate curve and its influences on bulb tubular turbines," Journal of Gansu Sciences, Vol. 22, No. 4, 145-149, Dec. 2010 (in Chinese).

9. Song, H. B., W. L. Li, and F. Y. Yang, "Placement angle effect of axical and radial stent on ventilation structure in bulb tubular turbine," Journal of Jiangsu University (Natural Science Edition), Vol. 34, No. 3, 281-286, May 2013 (in Chinese).

10. Moradian, M. and J. Soltani, "An isolated three-phase induction generator system with dual stator winding sets under unbalanced load condition," IEEE Trans. Energy Convers., Vol. 31, No. 2, 531-539, Jun. 2016.
doi:10.1109/TEC.2015.2508958

11. Peña, R., R. Cárdenas, E. Escobar, J. Clare, and P. Wheeler, "Control system for unbalanced operation of stand-alone doubly fed induction generators," IEEE Trans. Energy Convers., Vol. 22, No. 2, 544-545, Jun. 2007.
doi:10.1109/TEC.2007.895393

12. Singh, S. B., A. K. Singh, and P. Thakur, "Accurate performance assessment of IM with approximate current unbalance factor for NEMA definition," Int. Conf. Harmonic and Quality of Power, 674-678, 2014.

13. Yu, Q., X. S. Wang, and Y. H. Cheng, "Determination of air-gap flux density characteristics of switched reluctance machines with conductor layout and slotting effect," IEEE Trans. Magn., Vol. 52, No. 8, 8107307, Aug. 2016.
doi:10.1109/TMAG.2016.2553649

14. Barcaro, M. and N. Bianchi, "Air-gap flux density distortion and iron losses in anisotropic synchronous motors," IEEE Trans. Magn., Vol. 46, No. 1, 121-126, Jan. 2010.
doi:10.1109/TMAG.2009.2030675

15. Wallin, M., J. Bladh, and U. Lundin, "Damper winding influence on unbalanced magnetic pull in salient pole generators with rotor eccentricity," IEEE Trans. Magn., Vol. 49, No. 9, 5158-5165, Sep. 2013.
doi:10.1109/TMAG.2013.2259633

16. Kurihara, K., "Effects of damper bars on steady-state and transient performance of interior permanent-magnet synchronous generators," IEEE Trans. Ind. Appl., Vol. 49, No. 1, 42-49, Jan.-Feb. 2013.
doi:10.1109/TIA.2012.2229371

17. Wang, L. K., F. Y. Huo, W. L. Li, Y. H. Zhang, Q. Li, Y. Li, and C. W. Guan, "Influence of metal screen materials on 3-D electromagnetic field and eddy current loss in the end region of turbogenerator," IEEE Trans. Magn., Vol. 49, No. 2, 939-945, Feb. 2013.
doi:10.1109/TMAG.2012.2212026