Vol. 61
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-10-10
Design of 2D Metal Photonic Crystal Array of Directional Radiation in Microwave Band
By
Progress In Electromagnetics Research M, Vol. 61, 43-50, 2017
Abstract
A 2D metal photonic crystal structure with a rectangular lattice is designed for directed wave propagation in the microwave frequency band. The dispersion curve of EPC is computed for designing the directed period array.In order to favor the computing ,the rectangular period array is studied,which is differenr from the refrerence that is designed in optical range and uses the dielectric rods and hexagonal structure to compose the period array. The computed dispersion curves are combined with the theory of finite thick period array for obtainning the directed wave propagation structure. The influence of the number of metal rods on the antenna directionality is investigated, and the simulation results are compared and analyzed. It is found that when the number of transverse metal rods increases, the directionality of the antenna is enhanced, and the radiant power of the sidelobe radiation can be reduced. Based on the simulation results, the actual 2D metal photonic crystal array is constructed for the measurement validation.According to measurement results, the antenna located in the center of the array can get good directionality at 3.1 GHz.
Citation
Yanming Zhang, Guizhen Lu, and Dongdong Zeng, "Design of 2D Metal Photonic Crystal Array of Directional Radiation in Microwave Band," Progress In Electromagnetics Research M, Vol. 61, 43-50, 2017.
doi:10.2528/PIERM17062501
References

1. Almeida, C. J. F. and C. L. D. S. S. Sobrinho, "Influence of a PBG structure on the bandwidth of a microstrip antenna," IEEE Latin America Transactions, Vol. 2, 125-130, 2005.

2. Sung, Y. J. and Y. S. Kim, "An improved design of microstrip patch antennas using photonic bandgap structure," IEEE Transactions on Antennas & Propagation, Vol. 5, 31799-31804, 2005.

3. Hwang, I. K., G. H. Kim, and Y. H. Lee, "Optimization of coupling between photonic crystal resonator and curved microfiber," IEEE Journal of Quantum Electronics, Vol. 42, 2131-2136, 2005.

4. Li, J., et al. "Photonic crystal waveguide electro-optic modulator with a wide bandwidth," Journal of Lightwave Technology, Vol. 31, 101601-101607, 2013.

5. Li, S., et al. "A tunable terahertz photonic crystal narrow-band filter," IEEE Photonics Technology Letters, Vol. 27, 7752-7754, 2015.

6. Enoch, S., G. Tayeb, and D. Maystre, "Dispersion diagrams of Bloch modes applied to the design of directive sources," Progress In Electromagnetics Research, Vol. 41, No. 1, 61-81, 2003.
doi:10.2528/PIER02010803

7. Gralak, B., S. Enoch, and G. Tayeb, "Anomalous refractive properties of photonic crystals," Journal of the Optical Society of America A Optics Image Science & Vision, Vol. 17, No. 6, 1012-1020, 2000.
doi:10.1364/JOSAA.17.001012

8. Villeneuve, P. R., S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: Mode symmetry,tunability,and coupling efficiency," Phys. Rev. B Condens Matter, Vol. 54, No. 11, 7837-7842, 1996.
doi:10.1103/PhysRevB.54.7837

9. Yuan, Z., J. Haus, and K. Sakoda, "Eigenmode symmetry for simple cubic lattices and the transmission spectra," Optics Express, Vol. 3, No. 1, 19-27, 1998.
doi:10.1364/OE.3.000019

10. Li, L., "Bremmer series, R-matrix propagation algorithm, and numerical modeling of diffraction gratings," Journal of the Optical Society of America A, Vol. 11, No. 11, 2829-2836, 1994.
doi:10.1364/JOSAA.11.002829