Vol. 58

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-07-28

Energy-Efficient Communication in Large Scale Antenna Systems: Impact of Variable User Capacity and Number of Transmission Antennas

By Joseph Isabona and Viranjay M. Srivastava
Progress In Electromagnetics Research M, Vol. 58, 205-213, 2017
doi:10.2528/PIERM17052306

Abstract

Energy-efficient transmission is fast becoming a critical factor in designing future mobile broadband cellular communication systems. This research work examines the constraints with regard to the achievable throughput and energy efficiency that can be attained on the use of precoding-based massive MIMO systems, bearing in mind the effect of some key performance impacting parameters. We first introduced an absolute energy efficiency-based model to evaluate the deep-down relationship among the packet length, the Bit error rate (BER) and throughput. Then, by means of simulation with cyclic coordinated search algorithm, optimal achievable throughput and energy efficiency performance have been shown and demonstrated for variable capacity of users and number of transmission antennas. This work is expected to be of enormous importance to practical system design on the use of massive MIMO antenna technology for data throughput and energy efficiency maximization in future 5G systems.

Citation


Joseph Isabona and Viranjay M. Srivastava, "Energy-Efficient Communication in Large Scale Antenna Systems: Impact of Variable User Capacity and Number of Transmission Antennas," Progress In Electromagnetics Research M, Vol. 58, 205-213, 2017.
doi:10.2528/PIERM17052306
http://jpier.org/PIERM/pier.php?paper=17052306

References


    1. SMART 2020, "Enabling the low carbon economy in the information age,", 2010, Available at: www.smart2020.org/_assets/files/02_Smart2020Report.pdf.
    doi:10.1109/MCOM.2011.5783984

    2. Han, C., T. J. Harrold, S. M. D. Armour, I. Krikidis, S. Videv, P. Grant, H. Haas, J. Thompson, I. Ku, C.-X. Wang, T. Le, M. Nakhai, J. Zhang, and L. Hanzo, "Green radio: Radio techniques to enable energy-efficient wireless networks," IEEE Communication Magazine, Vol. 49, No. 6, 46-54, June 2011.
    doi:10.1109/TCOMM.2013.051313.121249

    3. Han, T. and N. Ansari, "On optimizing green energy utilization for cellular networks with hybrid energy supplies," IEEE Transactions on Wireless Communications, Vol. 12, No. 8, 3872-3882, 2013.
    doi:10.1109/TCOMM.2013.051313.121249

    4., "Community power using mobile to extend the grid,", Available online at: http://www.gsmworld.com/documents/gpfm_communitypower11whitepaperlores.pdf.

    5. 3gpp r3-100162, "Overview to LTE energy saving solutions to cell switch off/on," 3GPP RAN3 Meeting, Valencia, Spain, Jan. 2010.
    doi:10.1109/TWC.2014.012414.121106

    6. Dong, W., C. Chen, X. Liu, Y. He, Y. Liu, J. Bu, and X. Xu, "Dynamic packet length control in wireless sensor networks," IEEE Transaction on Wireless Communication, Vol. 13, 1172-1181, 2014.

    7. Wei, D., L. Yunhao, Z. Zhiwei, L. Xue, C. Chun, and B. Jiajun, "Link quality aware code dissemination in wireless sensor networks," IEEE Transaction on Parallel Distribution Systems, Vol. 25, 1776-1786, 2014.
    doi:10.1109/JSEN.2016.2517933

    8. Kim, D., D. Kim, and S. An, "Source authentication for code dissemination supporting dynamic packet size in wireless sensor networks, sensors," Sensors, Vol. 16, No. 7, 1-22, 2016.

    9. Wei, D., Y. Jie, and Z. Pingxin, "Exploiting error estimating codes for packet length adaptation in low-power wireless networks," IEEE Transaction Mobile in Computing, Vol. 14, 1601-1614, 2015.

    10. Nandi, A. and S. Kundu, "Optimal transmit power in wireless sensor networks using MRC space diversity in rayleigh fading channel," Proc. International Conference on Industrial and Information Systems (ICIIS), 19-24, 2010.
    doi:10.1007/s11277-010-9992-9

    11. Martorell, G., F. Riera-Palou, and G. Femenias, "Cross-layer fast link adaptation for MIMO-OFDM based WLANs," Wireless Personal Communication, Vol. 56, 599-609, 2011.

    12. Halperin, D., B. Greenstein, A. Sheth, and D. Wetherall, "Demystifying 802.11n power consumption," Proceeding of the 2010 International Conference on Power Aware Computing and Systems, HotPower’10, 1-5, Berkeley, CA, USA, 2010.

    13. Saker, L., S. E. Elayoubi, and H. O. Scheck, "System selection and sleep mode for energy saving in cooperative 2G/3G networks," Vehicular Technology Conference Fall, 1-5, Sep. 2009.

    14. Tombaz, S., P. Monti, K. Wang, A. Vastberg, M. Forzati, and J. Zander, "Impact of backhauling power consumption on the deployment of heterogeneous mobile networks," IEEE Global Telecommunications Conference (GLOBECOM), 1-5, 2011.
    doi:10.1155/2015/170854

    15. Behjati, M., M. H. Alsharif, R. Nordin, and M. Ismail, "Energy efficient and high capacity tradeoff in distributed antenna system for a green cellular networks," Journal of Computer Networks and Communications, Vol. 2015, 1-9, 2015.

    16. Isabona, J. and V. M. Srivastava, "Downlink massive MIMO systems: Achievable sum rates and energy efficiency perspective for future 5G systems," Wireless Personal Communication, Vol. 2017, 1-18, May 2017.
    doi:10.1109/JSAC.2016.2550338

    17. Buzzi, S., I. Chih-Lin, T. E. Klein, H. Vincent Poor, C. Yang, and A. Zappone, "A survey of energy-efficient techniques for 5G networks and challenges ahead," IEEE Journal on Selected Areas in Communications, Vol. 34, No. 4, 697-709, Apr. 2016.

    18. Auer, G., et al., "D2.3: Energy efficiency analysis of the reference systems, areas of improvements and target breakdown," EARTH, 2010.
    doi:10.1109/MCOM.2010.5621969

    19. Correia, L., D. Zeller, O. Blume, D. Ferling, Y. Jading, I. Godor, G. Auer, and L. Van Der Perre, "Challenges and enabling technologies for energy aware mobile radio networks," IEEE Communications Magazine, Vol. 48, No. 11, 66-72, 2010.

    20. Frenger, P., P. Moberg, J. Malmodin, Y. Jading, and I. Godor, "Reducing energy consumption in LTE with Cell DTX," Vehicular TechnologyConference Proceedings, 2011. VTC 2011-Spring Budapest. 2011 IEEE73rd, 1-5, 2011.

    21. Holtkamp, H., G. Auer, and H. Haas, "On minimizing base station power consumption," 2011 IEEE Vehicular Technology Conference (VTC Fall), 2011.
    doi:10.1016/j.optcom.2008.03.013

    22. Parker, M. C. and S. D. Walker, "Differential temperature Carnot heat analysis shows that computing machines are thermodynamically irreversible," Optical Communication, Vol. 281, 3440-3446, 2008.

    23. Parker, M. C. and S. D. Walker, "Road mapping ICT: An absolute energy efficiency metric, optical communication networks,", Vol. 3, No. 8, 2011.

    24. Heliot, F., M. A. Imran, and R. Tafazolli, "Energy-efficiency based resource allocation for the orthogonal multiuser channel," Proc. IEEE Vehicular Technology Conference (VTC Fall), Quebec City, Canada, Sep. 2012.

    25. Zhang, X., S. Zhou, Z. Niu, and X. Lin, "An energy-efficient user scheduling scheme for multiuser MIMO systems with RF chain sleeping," IEEE WCNC, 169-174, 2013.

    26. Hoydis, J., S. Ten Brink, and M. Debbah, "Comparison of linear precoding schemes for downlink massive MIMO," Proc. of the 2012 IEEE International Conference on Communications (ICC 2012), Ottawa, Canada, Jun. 2012.
    doi:10.1109/TWC.2012.122212.120086

    27. Xu, J. and L. Qiu, "Energy efficient optimization for MIMO broadcast channels," IEEE Transactions on Wireless Communications, Vol. 12, No. 2, 690-701, Feb. 2013.
    doi:10.1109/TWC.2009.081123

    28. Kim, H., C. B. Chae, G. de Veciana, J. Robert, and W. Heath, "A cross-layer approach to energy efficiency for adaptive MIMO systems exploiting spare capacity," IEEE Transactions on Wireless Communications, Vol. 8, No. 8, 4264-4275, Aug. 2009.