Vol. 58

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-07-02

Principles of Ideal Wideband Reflectarray Antennas

By Mohammad Khalaj-Amirhosseini
Progress In Electromagnetics Research M, Vol. 58, 57-64, 2017
doi:10.2528/PIERM17051003

Abstract

The principles of ideal wideband RAAs are determined through the idea of distortion-less radiation of a modulated pulse. Two conditions for the cells and one condition for the location of the feed are obtained. The conditions are discussed and clarified by some examples. Each cell requires its own phase at center frequency and its own phase derivative in the desired bandwidth. Some relations are obtained and discussed for the range of required phase derivative of the cells.

Citation


Mohammad Khalaj-Amirhosseini, "Principles of Ideal Wideband Reflectarray Antennas," Progress In Electromagnetics Research M, Vol. 58, 57-64, 2017.
doi:10.2528/PIERM17051003
http://jpier.org/PIERM/pier.php?paper=17051003

References


    1. Huang, J. and J. A. Encinar, Reflectarray Antennas, IEEE/John Wiley & Sons, New York, 2008.

    2. Encinar, J. A., "Design of two-layer printed reflectarray using patches of variable size," IEEE Trans. Antennas Propag., Vol. 49, No. 10, 1403-1410, Oct. 2001.
    doi:10.1109/8.954929

    3. Encinar, J. A. and J. A. Zornoza, "Broadband design of three-layer printed reflectarrays," IEEE Trans. Antennas Propag., Vol. 51, No. 7, 1662-1664, 2003.
    doi:10.1109/TAP.2003.813611

    4. Munson, R. E. and H. Haddad, "Microstrip reflectarray for satellite communication and RCS enhancement and reduction,", U.S. patent 4,684,952, Aug. 1987.

    5. Carrasco, E., M. Barba, and J. A. Encinar, "Reflectarray element based on aperture-coupled patches with slots and lines of variable length," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 820-825, 2007.
    doi:10.1109/TAP.2007.891863

    6. Pozar, D. M., "Wideband reflectarrays using artificial impedance surfaces," IEE Electron. Lett., Vol. 43, No. 3, 148-149, 2007.
    doi:10.1049/el:20073560

    7. Carrasco, E., J. A. Encinar, and M. Barba, "Bandwidth improvement in large reflectarrays by using true-time delay," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2496-2503, 2008.
    doi:10.1109/TAP.2008.927559

    8. Hasani, H., M. Kamyab, and A. Mirkamali, "Broadband reflectarray antenna incorporating disk elements with attached phase-delay lines," IEEE Antennas Wireless Propag. Lett., Vol. 9, 156-158, 2010.
    doi:10.1109/LAWP.2010.2044473

    9. Malfajani, R. S. and Z. Atlasbaf, "Design and implementation of a broadband single-layer reflectarray antenna with large-range linear phase elements," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1442-1445, 2012.
    doi:10.1109/LAWP.2012.2228147

    10. Chen, Q. Y., S. W. Qu, X. Q. Zhang, and M. Y. Xia, "Low-profile wideband reflectarray by novel elements with linear phase response," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1545-1547, 2012.
    doi:10.1109/LAWP.2012.2232899

    11. Arshad, M. K. and F. A. Tahir, "Optimum microstrip reflectarray unit cell design for wide-band operation," 11-th International Conference on Frontiers of Information Technology, 150-153, 2013.

    12. Tian, C., Y. C. Jiao, and W. Liang, "A broadband reflectarray using phoenix unit cell," Progress In Electromagnetics Research Letters, Vol. 50, 67-72, 2014.
    doi:10.2528/PIERL14093003

    13. Yoon, J. H., Y. J. Yoon, W. S. Lee, and J. H. So, "Broadband microstrip reflectarray with five parallel dipole elements," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1109-1112, 2015.
    doi:10.1109/LAWP.2015.2394810

    14. Hamzavi-Zarghani, Z. and Z. Atlasbaf, "A new broadband single-layer dual-band reflectarray antenna in X-and Ku-bands," IEEE Antennas Wireless Propag. Lett., Vol. 14, 602-605, 2015.
    doi:10.1109/LAWP.2014.2374351

    15. Yu, A., F. Yang, A. Z. Elsherbeni, J. Huang, and Y. Rahmat-Samii, "Aperture efficiency analysis of reflectarray antennas," Microwave and Optical Technology Letters, Vol. 52, No. 2, 364-372, February 2010.
    doi:10.1002/mop.24949