Vol. 58

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Design of Nonuniform Metallic Anechoic Chamber for Radiation Pattern Measurement

By Ali Farahbakhsh and Mohammad Khalaj-Amirhosseini
Progress In Electromagnetics Research M, Vol. 58, 65-72, 2017


Antenna pattern measurement is an essential step in antenna qualification which should be done in anechoic chambers. The common method for anechoic chamber construction is to cover all inside walls by the electromagnetic absorbers. In this paper, a new method is presented to design a fully metallic chamber by controlling the electromagnetic inside the chamber and guiding them to a piece of absorber. Therefore, a desirable quiet zone is formed inside the chamber while a great reduction of absorber usage is achieved. The proposed chamber is analyzed using ray tracing method, and its performance is evaluated by simulation that shows the practicality of the proposed chamber.


Ali Farahbakhsh and Mohammad Khalaj-Amirhosseini, "Design of Nonuniform Metallic Anechoic Chamber for Radiation Pattern Measurement," Progress In Electromagnetics Research M, Vol. 58, 65-72, 2017.


    1. Emerson, W. H., "Electromagnetic wave absorbers and anechoic chambers through the years," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 4, July 1973.

    2. Kineros, C. and V. Ungvichian, "A low cost conversion of semianechoic chamber to fully anechoic chamber for RF antenna measurements," 2003 IEEE International Symposium on Electromagnetic Compatibility, USA, 2003.

    3. Bornkessel, C. and W. Wiesbeck, "Numerical analysis and optimization of anechoic chambers for EMC testing," IEEE Trans. Electromagn. Compat., Vol. 38, No. 3, 499-506, August 1996.

    4. Razavi, S. M. J. and M. Khalaj-Amirhosseini, "Optimization an anechoic chamber with ray-tracing and genetic algorithms," Progress In Electromagnetics Research B, Vol. 9, 53-68, 2008.

    5. Hemming, L. H., Electromagnetic Anechoic Chambers: A Fundamental Design and Specification Guide, IEEE Press, 2002.

    6. Emerson, W. H., , U.S. Patent No. 3,308,463, March 1967, Anechoic Chamber.

    7. Hemming, L. H., , U.S. Patent No. 4,507,660, March 26, 1985, Anechoic Chamber.

    8. Sanchez, G. A., , U.S. Patent No. 5,631,661, May 20, 1997, Geometrically Optimized Anechoic Chamber.

    9. Razavi, S. M. J., M. Khalaj-Amirhosseini, and A. Cheldavi, "Minimum usage of ferrite tiles in anechoic chambers," Progress In Electromagnetics Research B, Vol. 19, 367-383, 2010.

    10. Nornikman, H., M. F. B. A. Malek, P. J. Soh, A. A. A.-H. Azremi, F. H. Wee, and A. Hasnain, "Parametric study of pyramidal microwave absorber using rice husk," Progress In Electromagnetics Research, Vol. 104, 145-166, 2010.

    11. Iqbal, M. N., M. F. B. A. Malek, Y. S. Lee, L. Zahid, M. I. Hussain, M. F. B. Haji Abd Malek, N. F. Mohamed Yusof, N. Saudin, and N. A. Abu Talib, "A simple technique for improving the anechoic performance of a pyramidal absorber," Progress In Electromagnetics Research M, Vol. 32, 129-143, 2013.

    12. Farahbakhsh, A. and M. Khalaj-amirhosseini, "Using metallic ellipsoid anechoic chamber to reduce the absorber usage," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 2015.

    13. Farahbakhsh, A. and M. Khalaj-amirhosseini, "Metallic spherical anechoic chamber for antenna pattern measurement," Chinese Physics B, Vol. 25, No. 8, 2016.

    14. Gielis, J., "A generic geometric transformation that unifies a wide range of natural and abstract shapes," American Journal of Botany, Vol. 90, No. 3, 333-338, 2003.

    15. Farahbakhsh, A., S. Tavakoli, and A. Seifolhosseini, "Enhancement of genetic algorithm and ant colony optimization techniques using Fuzzy systems," IEEE International Advance Computing Conference, India, March 2009.

    16. COMSOL Multiphysics®Modeling Software, , 2014.

    17. Togawa, H., K. Hatakeyama, and K. Yamauchi, "Reflectivity measurements in anechoic chambers in the microwave to millimeter range," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 2, 312-319, May 2005.

    18. Appel-Hansen, J., "Reflectivity level of radio anechoic chambers," IEEE Trans. Antennas Propag., Vol. 21, No. 4, 490-498, 1973.

    19. Chung, B.-K., C. H. The, and H.-T. Chuah, "Modeling of anechoic chamber using a beam-tracing technique," Progress In Electromagnetics Research, Vol. 49, 23-38, 2004.

    20. WR-75 Standard Gain Horn Antenna Operates From 10 GHz to 15 GHz with a Normal 10 dB Gain SMA Female Input Connector, Pasternack, Technical Data Sheet, 2013.