Vol. 58

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-07-04

Design of Nonuniform Metallic Anechoic Chamber for Radiation Pattern Measurement

By Ali Farahbakhsh and Mohammad Khalaj-Amirhosseini
Progress In Electromagnetics Research M, Vol. 58, 65-72, 2017
doi:10.2528/PIERM17050701

Abstract

Antenna pattern measurement is an essential step in antenna qualification which should be done in anechoic chambers. The common method for anechoic chamber construction is to cover all inside walls by the electromagnetic absorbers. In this paper, a new method is presented to design a fully metallic chamber by controlling the electromagnetic inside the chamber and guiding them to a piece of absorber. Therefore, a desirable quiet zone is formed inside the chamber while a great reduction of absorber usage is achieved. The proposed chamber is analyzed using ray tracing method, and its performance is evaluated by simulation that shows the practicality of the proposed chamber.

Citation


Ali Farahbakhsh and Mohammad Khalaj-Amirhosseini, "Design of Nonuniform Metallic Anechoic Chamber for Radiation Pattern Measurement," Progress In Electromagnetics Research M, Vol. 58, 65-72, 2017.
doi:10.2528/PIERM17050701
http://jpier.org/PIERM/pier.php?paper=17050701

References


    1. Emerson, W. H., "Electromagnetic wave absorbers and anechoic chambers through the years," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 4, July 1973.
    doi:10.1109/TAP.1973.1140517

    2. Kineros, C. and V. Ungvichian, "A low cost conversion of semianechoic chamber to fully anechoic chamber for RF antenna measurements," 2003 IEEE International Symposium on Electromagnetic Compatibility, USA, 2003.

    3. Bornkessel, C. and W. Wiesbeck, "Numerical analysis and optimization of anechoic chambers for EMC testing," IEEE Trans. Electromagn. Compat., Vol. 38, No. 3, 499-506, August 1996.
    doi:10.1109/15.536082

    4. Razavi, S. M. J. and M. Khalaj-Amirhosseini, "Optimization an anechoic chamber with ray-tracing and genetic algorithms," Progress In Electromagnetics Research B, Vol. 9, 53-68, 2008.
    doi:10.2528/PIERB08062902

    5. Hemming, L. H., Electromagnetic Anechoic Chambers: A Fundamental Design and Specification Guide, IEEE Press, 2002.
    doi:10.1109/9780470544501

    6. Emerson, W. H., , U.S. Patent No. 3,308,463, March 1967, Anechoic Chamber.

    7. Hemming, L. H., , U.S. Patent No. 4,507,660, March 26, 1985, Anechoic Chamber.

    8. Sanchez, G. A., , U.S. Patent No. 5,631,661, May 20, 1997, Geometrically Optimized Anechoic Chamber.

    9. Razavi, S. M. J., M. Khalaj-Amirhosseini, and A. Cheldavi, "Minimum usage of ferrite tiles in anechoic chambers," Progress In Electromagnetics Research B, Vol. 19, 367-383, 2010.
    doi:10.2528/PIERB09122102

    10. Nornikman, H., M. F. B. A. Malek, P. J. Soh, A. A. A.-H. Azremi, F. H. Wee, and A. Hasnain, "Parametric study of pyramidal microwave absorber using rice husk," Progress In Electromagnetics Research, Vol. 104, 145-166, 2010.
    doi:10.2528/PIER10041003

    11. Iqbal, M. N., M. F. B. A. Malek, Y. S. Lee, L. Zahid, M. I. Hussain, M. F. B. Haji Abd Malek, N. F. Mohamed Yusof, N. Saudin, and N. A. Abu Talib, "A simple technique for improving the anechoic performance of a pyramidal absorber," Progress In Electromagnetics Research M, Vol. 32, 129-143, 2013.
    doi:10.2528/PIERM13061607

    12. Farahbakhsh, A. and M. Khalaj-amirhosseini, "Using metallic ellipsoid anechoic chamber to reduce the absorber usage," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 2015.
    doi:10.1109/TAP.2015.2448791

    13. Farahbakhsh, A. and M. Khalaj-amirhosseini, "Metallic spherical anechoic chamber for antenna pattern measurement," Chinese Physics B, Vol. 25, No. 8, 2016.
    doi:10.1088/1674-1056/25/8/088401

    14. Gielis, J., "A generic geometric transformation that unifies a wide range of natural and abstract shapes," American Journal of Botany, Vol. 90, No. 3, 333-338, 2003.
    doi:10.3732/ajb.90.3.333

    15. Farahbakhsh, A., S. Tavakoli, and A. Seifolhosseini, "Enhancement of genetic algorithm and ant colony optimization techniques using Fuzzy systems," IEEE International Advance Computing Conference, India, March 2009.

    16. COMSOL Multiphysics®Modeling Software, , 2014.

    17. Togawa, H., K. Hatakeyama, and K. Yamauchi, "Reflectivity measurements in anechoic chambers in the microwave to millimeter range," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 2, 312-319, May 2005.
    doi:10.1109/TEMC.2005.847394

    18. Appel-Hansen, J., "Reflectivity level of radio anechoic chambers," IEEE Trans. Antennas Propag., Vol. 21, No. 4, 490-498, 1973.
    doi:10.1109/TAP.1973.1140524

    19. Chung, B.-K., C. H. The, and H.-T. Chuah, "Modeling of anechoic chamber using a beam-tracing technique," Progress In Electromagnetics Research, Vol. 49, 23-38, 2004.
    doi:10.2528/PIER04020601

    20. WR-75 Standard Gain Horn Antenna Operates From 10 GHz to 15 GHz with a Normal 10 dB Gain SMA Female Input Connector, Pasternack, Technical Data Sheet, 2013.