Vol. 57
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-06-13
Design and Analysis of a Bearingless Permanent-Magnet Machine with Improved Torque Density for Stirred Tank Bioreactor
By
Progress In Electromagnetics Research M, Vol. 57, 151-162, 2017
Abstract
A novel bearingless stirring permanent-magnet (PM) (BSPM) machine is proposed in this paper, which can offer high torque density, high efficiency, simple structure, and low cost. The novelty of the proposed machine is to provide a clean environment and no pinch-off areas in a stirred tank bioreactor and integrate appropriate magnetization directions of the PMs in the rotor. Firstly, the topology and operational principle of the proposed machine are described in detail. Then, the machine is designed for a given set of specifications, and its electromagnetic performances are analyzed by time-stepped transient finite-element method (FEM). Next, after the analysis of loss, a thermal simulation is established, complying with the design requirements. Finally, the efficiency and power factor map of the proposed BSPM machine are simulated for validation.
Citation
Ying Zhang, Yonghong Huang, Ye Yuan, Jianhua Luo, and Xiaodong Chen, "Design and Analysis of a Bearingless Permanent-Magnet Machine with Improved Torque Density for Stirred Tank Bioreactor," Progress In Electromagnetics Research M, Vol. 57, 151-162, 2017.
doi:10.2528/PIERM17031906
References

1. Montiel-Moreno, G., J. Zechinelli-Martini, and G. Vargas-Solar, "SLSELS: Semantic integration system for exploitation of biological resources," 2009 Mexican International Conference on Computer Science, 197-202, 2010.

2. Artis, F., D. Dubuc, J. Fournie, M. Poupot, and K. Grenier, "Microwave dielectric spectroscopy for biological cells suspensions analysis and proliferation evaluation," 2014 44th European Microwave Conference, 275-278, 2014.
doi:10.1109/EuMC.2014.6986423

3. Daniele, M., F. Vozzi, A. Cisternino, G. Vozzi, and A. Ahluwalia, "A high-throughput bioreactor system simulating physiological environments," IEEE Transactions on Industrial Electronics, Vol. 55, No. 10, 3273-3280, 2008.

4. Maki, A., T. Ryynanen, J. Verho, J. Kreytzer, J. Lekkala, and P. J. Kallio, "Indirect temperature measurement and control method for cell culture devices," IEEE Transaction on Automation Science and Engineering, Vol. 1, No. 99, 1-10, 2016.

5. Henson, M. A., "Biochemical reactor modeling and control," IEEE Control Systems Magazine, Vol. 26, No. 4, 54-62, 2006.
doi:10.1109/MCS.2006.1657876

6. Ye, S. and K. T. Chau, "Chaoization of DC motors for industrial mixing," IEEE Transactions on Industrial Electronics, Vol. 54, No. 4, 2024-2032, 2007.
doi:10.1109/TIE.2007.895150

7. Bartholet, M. T., T. Nussbaumer, S. Silber, and J. W. Kolar, "Comparative evaluation of polyphase bearingless slice motors for fluid-handling applications," IEEE Transactions on Industry Applications, Vol. 45, No. 5, 1821-1830, 2009.
doi:10.1109/TIA.2009.2027366

8. Park, S. and C. Lee, "Decoupled control of a disk-type rotor equipped with a three-pole hybrid magnetic bearing," IEEE/ASME Transactions on Mechatronics, Vol. 15, No. 5, 793-804, 2010.
doi:10.1109/TMECH.2009.2035113

9. Ooshima, M., A. Chiba, T. Fukao, and M. A. Rahman, "Design and analysis of permanent magnet-type bearingless motors," IEEE Transactions on Industrial Electronics, Vol. 43, No. 2, 292-299, 1996.
doi:10.1109/41.491353

10. Yang, S. and M. Huang, "Design and implementation of a magnetically levitated single-axis controlled blood pump," IEEE Transactions on Industrial Electronics, Vol. 56, No. 6, 2213-2219, 2009.
doi:10.1109/TIE.2009.2017095

11. Reichert, T., T. Nussbaumer, W. Gruber, and J. W. Kolar, "Bearingless Permanent-Magnet motor with 4/12 slot-pole ratio for bioreactor stirring applications," IEEE/ASME Transactions on Mechatronics, Vol. 16, No. 3, 431-439, 2011.
doi:10.1109/TMECH.2011.2122340

12. Dajaku, G., W. Xie, and D. Gerling, "Reduction of low space harmonics for the fractional slot concentrated windings using a novel stator design," IEEE Transaction on Magnetics, Vol. 50, No. 5, 1-12, 2014.
doi:10.1109/TMAG.2013.2294754

13. Jian, L. and K. T. Chau, "Design and analysis of a magnetic geared electronic-continuously variable transmission system using finite element method," Progress In Electromagnetics Research, Vol. 107, 47-61, 2010.
doi:10.2528/PIER10062806

14. Jian, L., G. Xu, Y. Gong, J. Song, J. Liang, and M. Chang, "Electromagnetic design and analysis of a novel magnetic-gear-integrated wind power generator using time-stepping finite element method," Progress In Electromagnetics Research, Vol. 113, 351-367, 2011.
doi:10.2528/PIER10121603

15. Bramerdorfer, G. and D. Andessner, "Accurate and easy-to-obtain iron loss model for electric machine design," IEEE Transactions on Industrial Electronics, Vol. 64, No. 3, 2530-2537, 2017.
doi:10.1109/TIE.2016.2583402

16. Bianchi, N. and E. Fornasiero, "Impact of MMF space harmonic on rotor loss in fractional-slot permanent-magnet machines," IEEE Transaction on Energy Conversion, Vol. 24, No. 2, 323-328, 2009.
doi:10.1109/TEC.2008.2006557

17. Chai, F., P. Liang, Y. Pei, and S. Cheng, "Magnet shape optimization of surface-mounted permanent-magnet motors to reduce harmonic iron losses," IEEE Transaction on Magnetics, Vol. 52, No. 7, Article ID: 7300504, 2015.

18. Choi, G. and T. M. Jahns, "Reduction of eddy-current losses in fractional-slot concentrated-windings synchronous PM machines," IEEE Transaction on Magnetics, Vol. 52, No. 7, Article ID: 8105904, 2016.

19. Gonzalez, D. A. and D. M. Saban, "Study of the copper losses in a high-speed permanent-magnet machine with form-wound windings," IEEE Transactions on Industrial Electronics, Vol. 61, No. 6, 3038-3045, 2014.
doi:10.1109/TIE.2013.2262759

20. Kim, Y. and K. Nam, "Copper-loss-minimizing field current control scheme for wound synchronous machines," IEEE Transactions on Power Electronics, Vol. 32, No. 2, 1335-1345, 2017.
doi:10.1109/TPEL.2016.2547953