Vol. 58

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-06-27

Characteristic Analysis of Phase Glint in InSAR Image Processing

By Jing-Ke Zhang, Dahai Dai, Zong-Feng Qi, Yong-Hu Zeng, and Liandong Wang
Progress In Electromagnetics Research M, Vol. 58, 43-55, 2017
doi:10.2528/PIERM17031601

Abstract

This paper investigates the phase glint problem involved in interferometric synthetic aperture radar (InSAR) image processing, which refers to the multiple scatterer interference of a single pixel, and studies the distribution of interferometric phase in the case of double scatterer interference. It is found that the value range of the observed interferometric phase is related to several factors including the complex scattering coefficient ratio and interferometric phase difference between the elementary scatterers, and no matter what values of interferometric phases of elementary scatterers are taken, the dynamic range of interferometric phase of phase glintis always. This paper also briefly analyzes the impact of phase glint on classical InSAR image processing and man-made target height retrieval, and it is concluded that the phase glint will induce significant height estimating error. Simulation and real data results verify the conclusion.

Citation


Jing-Ke Zhang, Dahai Dai, Zong-Feng Qi, Yong-Hu Zeng, and Liandong Wang, "Characteristic Analysis of Phase Glint in InSAR Image Processing," Progress In Electromagnetics Research M, Vol. 58, 43-55, 2017.
doi:10.2528/PIERM17031601
http://jpier.org/PIERM/pier.php?paper=17031601

References


    1. Cumming, I. G. and F. K. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithm and Implementation, Artech House, Norwood, MA, 2005.

    2. Henke, D., et al., "Moving-target tracking in single-channel wide-beam SAR," IEEE Trans. on Geosci. Remote Sens., Vol. 50, No. 11, 4735-4747, 2012.
    doi:10.1109/TGRS.2012.2191561

    3. Mouche, A. A., et al., "On the use of doppler shift for sea surface wind retrieval from SAR," IEEE Trans. on Geosci. Remote Sens., Vol. 50, No. 7, 2901-2909, 2012.
    doi:10.1109/TGRS.2011.2174998

    4. Zhou, J. X., et al., "Automatic target recognition of SAR imagesbased on global scattering center model," IEEE Trans. on Geosci. Remote Sens., 3713-3729, 2011.

    5. Papson, S. and R. M. Narayanan, "Classification via the shadow region in SAR imagery," IEEE Trans. on Aerospace and Electronic Systems, Vol. 48, No. 2, 969-980, 2012.
    doi:10.1109/TAES.2012.6178042

    6. Dabboor, M., et al., "An unsupervised classification approach for polarimetric SAR data based on the chernoff distance for complex wishart distribution," IEEE Trans. Geosci. Remote Sens., Vol. 51, No. 7, 4200-4213, 2013.
    doi:10.1109/TGRS.2012.2227755

    7. Zhu, X. X. and R. Bamler, "Tomographic SAR inversion by L1-norm regularization - The Compressive Sensing Approach," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 10, 3839-3846, 2010.
    doi:10.1109/TGRS.2010.2048117

    8. Xing, S. Q., et al., "Three-dimensional reconstruction of man-made objects using polarimetric tomographic SAR," IEEE Trans. Geosci. Remote Sens., Vol. 51, No. 6, 3694-3705, 2013.
    doi:10.1109/TGRS.2012.2220145

    9. Rosen, P. A., et al., "Synthetic aperture radar interferometry," Proc. IEEE, Vol. 88, No. 3, 333-382, 2000.
    doi:10.1109/5.838084

    10. Berardino, P., et al., "A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms," IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 11, 2375-2383, 2002.
    doi:10.1109/TGRS.2002.803792

    11. Cloude, S. R. and K. P. Papathanassiou, "Polarimetric SAR interferometry," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 5, 1551-1565, 1998.
    doi:10.1109/36.718859

    12. Papathanassiou, K. P. and S. R. Cloude, "Single baseline polarimetric SAR interferometry," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 11, 2352-2363, 2001.
    doi:10.1109/36.964971

    13. Zhu, X. X. and R. Bamler, "Demonstration of super-resolution for tomographic SAR imaging in urban environment," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 8, 3150-3157, 2012.
    doi:10.1109/TGRS.2011.2177843

    14. Austin, C. D. and R. L. Moses, "IFSAr processing for 3D target reconstruction," Algorithms for Synthetic Aperture Radar Imagery XII, SPIE Defense and Security Symposium, Orlando, 2005.

    15. Austin, C. D. and R. L. Moses, "Interferometric synthetic aperture radar detection and estimation based 3D image reconstruction," Algorithms for Synthetic Aperture Radar Imagery XIII, SPIE Defense and Security Symposium, Orlando, 2006.

    16. Xing, S. Q., "Study on the 3D imaging of manmade target based on polarimetric radar," China National University of Defense Technology, 2013.

    17. Pauciullo, A., et al., "Detection of double scatterers in SAR tomography," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 9, 3567-3586, 2012.
    doi:10.1109/TGRS.2012.2183002

    18. Lombardini, F. and M. Pardini, "Superresolution differential tomography: Experiments on identification of multiple scatterers in spaceborne SAR data," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 4, 1117-1129, 2012.
    doi:10.1109/TGRS.2011.2164925

    19. Burrows, M. L., "Two-dimensional ESPRIT with tracking for radar imaging and feature extraction," IEEE Trans. Antenna Propagat., Vol. 52, No. 2, 524-532, 2004.
    doi:10.1109/TAP.2003.822411