Vol. 58

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-06-21

Effect of Varying Curvature and Inter Element Spacing on Dielectric Coated Conformal Microstrip Antenna Array

By Prasanna Kumar Singh and Jasmine Saini
Progress In Electromagnetics Research M, Vol. 58, 11-19, 2017
doi:10.2528/PIERM17022012

Abstract

In the design of a conformal patch antenna array, a special care must be taken regarding the placement of elements and curvature bending. Presently, the authors try to explain the effect of these two factors on the key parameters such as return loss, mutual coupling, gain and directivity. Here, the analyses of parameters are done under the consideration of dielectric coated two-element antenna array model. This paper attempts to examine the characteristics of the dielectric coated conformal antenna array by varying its inter element spacing on the changing cylindrical geometry. The two-element conformal array is considered in E-plane and H-plane configurations, and its parameters are analyzed using full wave analysis and verified by HFSS tool. A comparative study shows that the E-plane configuration gives better result than H-plane configuration.

Citation


Prasanna Kumar Singh and Jasmine Saini, "Effect of Varying Curvature and Inter Element Spacing on Dielectric Coated Conformal Microstrip Antenna Array," Progress In Electromagnetics Research M, Vol. 58, 11-19, 2017.
doi:10.2528/PIERM17022012
http://jpier.org/PIERM/pier.php?paper=17022012

References


    1. Wong, K.-L., Design of Nonplanar Microstrip Antennas and Transmission Lines, 16-30, John Wiley & Sons Inc., New York, 1999.
    doi:10.1002/0471200662.ch2

    2. Josefsson, L. and P. Persson, Conformal Array Antenna Theory and Design, 155-258, John Wiley & Sons Inc., New Jersey, 2006.
    doi:10.1002/047178012X.ch6

    3. Singh, P. K. and J. Saini, "Performance analysis of superstrate loaded cylindrically conformal microstrip antenna on the varying curvature for Wimax applications," International Journal of Microwave and Optical Technology, Vol. 11, No. 6, 406-412, Nov. 2016.

    4. Alexopoulos, N. G. and D. R. Jackson, "Fundamental superstrate (cover) effect on printed circuit antennas," IEEE Transactions on Antennas and Propagation, Vol. 32, 807-816, 1984.
    doi:10.1109/TAP.1984.1143433

    5. You, C., W. Hwang, and M. Tenteris, "Impact behavior and radiation performance of a structurally integrated antenna array conformed around cylindrical bodies," IEEE International Symp. Antennas and Propag. Soc., 3844-3847, Jun. 2007.

    6. Tam, W. Y., A. K. Y. Lai, and K. M. Luk, "Mutual coupling between cylindrical rectangular microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 8, 897-899, Aug. 1995.
    doi:10.1109/8.402215

    7. Krowne, C. M., "Cylindrical-rectangular microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 1, 194-199, Jan. 1983.
    doi:10.1109/TAP.1983.1143000

    8. Guha, D. and J. Y. Siddiqui, "Resonant frequency of circular microstrip antenna covered with dielectric superstrate," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1649-1652, Jul. 2003.
    doi:10.1109/TAP.2003.813620

    9. Balanis, C. A., Antenna Theory, Analysis and Design, 3rd Ed., 811-876, John Wiley & Sons, New York, 2005.

    10. Zhang, K. and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics, 2nd Ed., 117-178, Springer-Berlin Heidelberg, New York, 1998.
    doi:10.1007/978-3-662-03553-5