This paper describes a parallel implementation of the Inverse Fast Multipole Method (IFMM) for multi-bistatic imaging configurations. NVIDIAs Compute Unified Device Architecture (CUDA) is used to parallelize and accelerate the imaging algorithm in a Graphics Processing Unit (GPU). The algorithm is validated with synthetic data generated by the Modified Equivalent Current Approximation (MECA) method and experimental data collected by a Frequency-Modulated Continuous Wave (FMCW) radar system operating in the 70-77 GHz frequency band. The presented results show that the IFMM implementation using the CUDA platform is effective at significantly reducing the algorithm computational time, providing a 300X speedup when compared to the single core OpenMP version of the algorithm.
2. Ahmed, S. S., A. Schiessl, F. Gumbmann, M. Tiebout, S. Methfessel, and L. P. Schmidt, "Advanced microwave imaging," IEEE Microwave Magazine, Vol. 13, No. 6, 26-43, Sep. 2012.
doi:10.1109/MMM.2012.2205772
3. Martinez-Lorenzo, J. A., F. Quivira, and C. M. Rappaport, "SAR imaging of suicide bombers wearing concealed explosive threats," Progress In Electromagnetics Research, Vol. 125, 255-272, 2012.
doi:10.2528/PIER11120518
4. Alvarez, Y., B. Gonzalez-Valdes, J. Martinez Lorenzo, F. Las-Heras, and C. Rappaport, "3D whole body imaging for detecting explosive-related threats," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4453-4458, 2012.
doi:10.1109/TAP.2012.2207068
5. Gonzalez-Valdes, B., Y. Alvarez, Y. Rodriguez-Vaqueiro, A. Arboleya-Arboleya, A. Garcia-Pino, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, "Millimeter wave imaging architecture for on-the-move whole body imaging," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2328-2338, Jun. 2016.
doi:10.1109/TAP.2016.2539372
6. Gonzalez-Valdes, B., C. Rappaport, J. A. M. Lorenzo, Y. Alvarez, and F. Las-Heras, "Imaging effectiveness of multistatic radar for human body imaging," 2015 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, 681-682, Jul. 2015.
7. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propagation Magazine, Vol. 35, No. 3, 7-12, Jun. 1993.
doi:10.1109/74.250128
8. Darve, E., "The fast multipole method: Numerical implementation," Journal of Computational Physics, Vol. 160, No. 1, 195-240, 2000, [Online], Available: http://www.sciencedirect.com/science/article/pii/S0021999100964519.
doi:10.1006/jcph.2000.6451
9. Eibert, T. F. and C. H. Schmidt, "Multilevel fast multipole accelerated inverse equivalent current method employing rao-wilton-glisson discretization of electric and magnetic surface currents," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 1178-1185, Apr. 2009.
doi:10.1109/TAP.2009.2015828
10. Alvarez-Lopez, Y., F. Las-Heras, M. R. Pino, and J. A. Lopez, "Acceleration of the sources reconstruction method via the fast multipole method," 2008 IEEE Antennas and Propagation Society International Symposium, 1-4, Jul. 2008.
11. Alvarez, Y., J. A. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, "An inverse fast multipole method for geometry reconstruction using scattered field information," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3351-3360, 2012.
doi:10.1109/TAP.2012.2196950
12. Schnattinger, G. and T. F. Eibert, "Solution of the vectorial 3d inverse source problem by adjoint near-field fast multipole translations," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 1-2, Jul. 2012.
13. Dang, V., Q. Nguyen, and O. Kilic, "Gpu cluster implementation of fmm-fit for large-scale electromagnetic problems," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1259-1262, 2014.
doi:10.1109/LAWP.2014.2332972
14. López-Portugués, M., J. A. López-Fernández, J. Menéndez-Canal, A. Rodríguez-Campa, and J. Ranilla, "Acoustic scattering solver based on single level fmm for multi-gpu systems," J. Parallel Distrib. Comput., Vol. 72, No. 9, 1057-1064, Sep. 2012, [Online], Available: http://www.sciencedirect.com/science/article/pii/S0743731511001481.
doi:10.1016/j.jpdc.2011.07.013
15. Martinez-Lorenzo, J., J. Heredia Juesas, and W. Blackwell, "A single-transceiver compressive reflector antenna for high-sensing-capacity imaging," IEEE Antennas and Wireless Propagation Letters, Vol. PP, No. 99, 1-1, 2015.
16. Molaei, A., G. Allan, J. Heredia, W. Blackwell, and J. Martinez-Lorenzo, "Interferometric sounding using a compressive reflector antenna," 2016 10th European Conference on Antennas and Propagation (EuCAP), IEEE, 1-4, 2016.
17. Juesas, J. H., G. Allan, A. Molaei, L. Tirado, W. Blackwell, and J. A. M. Lorenzo, "Consensus-based imaging using admm for a compressive reflector antenna," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE, 1304-1305, 2015.
doi:10.1109/APS.2015.7305041
18. Obermeier, R. and J. A. Martinez-Lorenzo, "Model-based optimization of compressive antennas for high-sensing-capacity applications," IEEE Antennas and Wireless Propagation Letters, Vol. PP, No. 99, 1-1, 2016.
19. Wang, L., L. Li, Y. Li, H. C. Zhang, and T. J. Cui, "Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface," Scientific Reports, Vol. 6, 26959, 2016.
doi:10.1038/srep26959
20. Gopalsami, N., S. Liao, T. W. Elmer, E. R. Koehl, A. Heifetz, A. C. Raptis, L. Spinoulas, and A. K. Katsaggelos, "Passive millimeter-wave imaging with compressive sensing," Optical Engineering, Vol. 51, No. 9, 091 614-1, 2012.
doi:10.1117/1.OE.51.9.091614
21., "Nvidia's next generation cuda compute architecture: Kepler gk110/210,", http://international.download.nvidia.com/pdf/kepler/nvidia-kepler-gk110-gk210-architecturewhitepaper.pdf, 2014.
doi:10.1117/1.OE.51.9.091614
22. Boyer, M., "Cuda kernel overhead,", http://www.cs.virginia.edu/∼mwb7w/cuda support/kerneloverhead.html, online, accessed Apr. 7, 2017.
23. Harris, M., "How to access global memory efficiently in cuda c/c++ kernels,", NVIDIA, Jan. 2013, [Online], Available: https://devblogs.nvidia.com/parallelforall/how-access-global-memory-efficiently-cuda-c-kernels/24.
24., "Nvidia, cuda occupancy calculator,", http://developer.download.nvidia.com/compute/cuda/cudaoccupancy calculator.xls, 2012.
25. Kirk, D. B. and W.-M. W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach, 3rd Ed., Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2016.
26. Alvarez, Y., J. Laviada, L. Tirado, C. Garcia, J. Martinez, F. Las-Heras, and C. M. Rappaport, "Inverse fast multipole method for monostatic imaging applications," IEEE Geoscience and Remote Sensing Letters, Vol. 10, No. 5, 1239-1243, Sep. 2013.
doi:10.1109/LGRS.2012.2237158
27. Meana, J., J. Á. Martínez-Lorenzo, F. Las-Heras, and C. Rappaport, "Wave scattering by dielectric and lossy materials using the modified equivalent current approximation (MECA)," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 11, 3757-3761, 2010.
doi:10.1109/TAP.2010.2071363
28. Ahmed, S. S., A. Schiessl, and L. P. Schmidt, "Multistatic mm-wave imaging with planar 2d-arrays," 2009 German Microwave Conference, 1-4, Mar. 2009.
29., "Hxi model 8300 73 GHz multi-static FMCW radar front end (RFE),", http://www.hxi.com/Products/hfnov12.pdf, 2012.