Vol. 55
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-04-09
SAR Imaging on HEO Satellites with an Improved Frequency-Domain Algorithm
By
Progress In Electromagnetics Research M, Vol. 55, 189-201, 2017
Abstract
The possibility of employing highly-elliptical-orbit (HEO) satellites for SAR imaging is investigated. A constellation of two satellites in the Tundra orbits, which are capable of covering all the high-latitude areas, are chosen as the platforms for SAR imaging. The received signals are processed with an improved frequency-domain algorithm (FDA) to reconstruct the image. Simulation results verify that the proposed method can produce better SAR images with less computational load and memory than the conventional FDA.
Citation
Po-Chih Chen, and Jean-Fu Kiang, "SAR Imaging on HEO Satellites with an Improved Frequency-Domain Algorithm," Progress In Electromagnetics Research M, Vol. 55, 189-201, 2017.
doi:10.2528/PIERM17011301
References

1. Velde, R. V. D., M. S. Salama, O. A. Eweys, J. Wen, and Q. Wang, "Soil moisture mapping using combined active/passive microwave observations over the east of the Netherlands," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 8, No. 9, 4355-4372, Sep. 2015.
doi:10.1109/JSTARS.2014.2353692

2. Reiche, J., C. M. Souza, D. H. Hoekman, J. Verbesselt, H. Persaud, and M. Herold, "Feature level fusion of multi-temporal ALOS PALSAR and landsat data for mapping and monitoring of tropical deforestation and forest degradation," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 6, No. 5, 2159-2173, Oct. 2013.
doi:10.1109/JSTARS.2013.2245101

3. Lucas, R., et al. "An evaluation of the ALOS PALSAR L-band backscatter above ground biomass relationship Queensland, Australia: Impacts of surface moisture condition and vegetation structure," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 3, No. 4, 576-595, Dec. 2010.
doi:10.1109/JSTARS.2010.2086436

4. Zhao, B., Y. Han, W. Gao, Y. Luo, and X. Han, "A new imaging algorithm for geosynchronous SAR based on the fifth-order Doppler parameters," Progress In Electromagnetics Research B, Vol. 55, 195-215, 2013.
doi:10.2528/PIERB13072803

5. Hu, C., Z. Liu, and T. Long, "An improved CS algorithm based on the curved trajectory in geosynchronous SAR," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 5, No. 3, 795-808, Jun. 2012.
doi:10.1109/JSTARS.2012.2188096

6. Li, D.-X., M.-Q. Wu, Z.-Y. Sun, F. He, and Z. Dong, "Modeling and processing of two-dimensional spatial-variant geosynchronous SAR data," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 8, No. 8, 3999-4010, Aug. 2015.
doi:10.1109/JSTARS.2015.2418814

7. Hu, C., Y. Tian, T. Zeng, T. Long, and X. Dong, "Adaptive secondary range compression algorithm in geosynchronous SAR," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 9, No. 4, 1397-1413, Apr. 2016.
doi:10.1109/JSTARS.2015.2477317

8. Hu, C., T. Long, Z. Liu, T. Zeng, and Y. Tian, "An improved frequency domain focusing method in geosynchronous SAR," IEEE Trans. Geosci. Remote Sensing, Vol. 52, No. 9, 5514-5528, Sep. 2014.
doi:10.1109/TGRS.2013.2290133

9. Ding, Z., B. Shu, W. Yin, T. Zeng, and T. Long, "A modified frequency domain algorithm based on optimal azimuth quadratic factor compensation for geosynchronous SAR imaging," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 9, No. 3, 1119-1131, Mar. 2016.
doi:10.1109/JSTARS.2015.2497000

10. Rodon, J. R., A. Broquetas, A. M. Guarnieri, and F. Rocca, "A Ku-band geosynchronous synthetic aperture radar mission analysis with medium transmitted power and medium-sized antenna," IEEE Int. Geosci. Remote Sensing Symp., 2456-2459, Vancouver, BC, Canada, Jul. 2011.

11. Wood, L., Y. Lou, and O. Olusola, "Revisiting elliptical satellite orbits to enhance the O3b constellation,", https://arxiv.org/ftp/arxiv/papers /1407/1407.2521.pdf.

12. Ilcev, S. D., Global Mobile Satellite Communications for Maritime, Land and Aeronautical Applications, Springer, 2005.

13. Ilcev, S. D., "Highly elliptical orbits (HEO) for high latitudes and polar coverage," IEEE Int. Crimean Conf. Microwave Telecom. Tech., 396-399, Sevastopol, Crimea, Ukraine, Sep. 2010.

14. Cavallaro, G., D. Pham-Minh, and M. Bousquet, "HEO constellation design for tactical communications," IEEE Euro. Conf. Satellite Telecom., Toulouse, France, Oct. 2012.

15. Tsimbal, M. and S. Panko, "Features of the HEO satellite communication systems," IEEE Int. Siberian Conf. Control Commun., Omsk, Russia, May 2015.

16. AgrawaIt, B. N., "High latitude communications satellite,", http://digitalcommons.usu.edu/cgi/viewcontent.cgi article=2770 & context=smallsat.

17. Chen, P.-C. and J.-F. Kiang, "An improved range-Doppler algorithm for SAR imaging at high squint angles," Progress In Electromagnetics Research M, Vol. 53, 41-52, 2017.
doi:10.2528/PIERM16111601