Vol. 54

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-02-22

Investigation of an Electrically Small Half-Loop Antenna Embedded with a Non-Foster Network Using the Characteristic Mode Theory

By Li Sun, Bao-Hua Sun, and Guanxi Zhang
Progress In Electromagnetics Research M, Vol. 54, 183-193, 2017
doi:10.2528/PIERM17010404

Abstract

An electrically small half-loop antenna (ESHLA) embedded with Foster elements is analyzed using the characteristic mode (CM) theory. The resonant frequency and radiation characteristics of the ESHLA are mainly determined by the resonant mode (Mode 1). The characteristic currents of resonant mode (Mode 1) and non-resonant mode (higher order mode) prove the parallel resonance of the ESHLA. However, owing to the modal significance (MS) of the resonant mode varying fast with frequency, the proposed ESHLA has a narrow bandwidth. Analysis shows the MS of the resonant mode and the higher order mode are changed by tuning the Foster element, leading to a negative admittance variation slope in accordance with the non-Foster behavior. By replacing the Foster capacitor with the non-Foster network, both the characteristic currents and the MS are changed over a wide bandwidth. As a consequence, the introduced non-Foster network turns Mode 1 from the narrowband resonant mode into a continuous resonant mode with its radiation pattern kept invariant over a wide bandwidth. The proposed ESHLA with its non-Foster network is fabricated and measured. The measured 6-dB return loss bandwidth is about 12.7% (11.45-13 MHz), with its reflection coefficient curve being an envelope of those of Foster elements embedded ESHLA.

Citation


Li Sun, Bao-Hua Sun, and Guanxi Zhang, "Investigation of an Electrically Small Half-Loop Antenna Embedded with a Non-Foster Network Using the Characteristic Mode Theory," Progress In Electromagnetics Research M, Vol. 54, 183-193, 2017.
doi:10.2528/PIERM17010404
http://jpier.org/PIERM/pier.php?paper=17010404

References


    1. Wei, T. and H. L. Zheng, "An optimised of high-efficiency vehicular loop antenna for NVIS applications," 2010 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1252-1255, May 8-11, 2010.

    2. Austin, B. and K. Murray, "The application of characteristic-mode techniques to vehicle-mounted NVIS antennas," IEEE Antennas Propag. Mag., Vol. 40, No. 1, 7-21, Feb. 30, 1998.
    doi:10.1109/74.667319

    3. Zhou, G. P. and G. S. Smith, "An accurate theoretical model for the thin-wire circular half-loop antenna," IEEE Trans. Antennas Propagat., Vol. 39, No. 8, 1167-1177, Aug. 1991.
    doi:10.1109/8.97352

    4. Packer, M. J. and P. A. Diez, "Electrically small half-loop antenna analysis by numerical emulation," Proc. 10th IET International Conference on IRST, 2006, 64-68, Jul. 18-21, 2006.

    5. Zhou, G. P. and G. S. Smith, "The multiturn half-loop antenna," IEEE Trans. Antennas Propagat., Vol. 42, No. 5, 750-754, May 1994.
    doi:10.1109/8.299578

    6. Liu, H. T., Y. H. Cheng, and M. Yan, "Electrically small loop antenna standing on compact ground in wireless sensor package," IEEE Antennas Wireless Propag. Lett., Vol. 15, No. 99, 1-1, 2015.

    7. Koubeissi, M., B. Pomie, and E. Rochefort, "Perspectives of HF half loop antennas for stealth combat ships," Progress In Electromagnetics Research B, Vol. 54, 167-184, 2013.
    doi:10.2528/PIERB13050201

    8. Gouin, J. P., D. Lafargue, and H. L. Guen, "HF 125 W half-loop antennas in ALE and ECCM for land mobile, navy and helicopter use," Proc. Eighth International conference on HF Radio Systems and Techniques, 49-52, 2000.

    9. Chu, L. J., "Physical limitations of omni-directional antennas," Journal of Applied Physics, Vol. 19, 1163-1175, Dec. 1948.
    doi:10.1063/1.1715038

    10. Wheeler, H. A., "Fundamental limitations of small antennas," Proc. IRE, Vol. 35, No. 12, 1479-1484, Dec. 1947.
    doi:10.1109/JRPROC.1947.226199

    11. Ouedraogo, R. O., E. J. Rothwell, A. Diaz, S.-Y. Chen, A. Temme, and K. Fuchi, "In situ optimization of metamaterial-inspired loop antennas," IEEE Antenna Wireless Propag. Lett., Vol. 9, 75-78, 2010.
    doi:10.1109/LAWP.2010.2043409

    12. Ramanandraibe, E., M. Latrach, W. Abdouni, and A. Sharaiha, "A half-loop antenna associated with one SRR cell," Proc. 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), 1442-1445, 2013.
    doi:10.1109/ICEAA.2013.6632488

    13. Ramanandraibe, E., M. Latrach, and A. Sharaiha, "Multi-band metamaterial-inspired half-loop antenna," Proc. 2014 International Conference on Multimedia Computing and Systems (ICMCS), 1449-1452, 2014.
    doi:10.1109/ICMCS.2014.6911328

    14. Mirzaei, H. and G. V. Eleftheriades, "A resonant printed monopole antenna with an embedded non-foster matching network," IEEE Trans. Antennas Propagat., Vol. 61, No. 11, 5363-5371, Nov. 2013.
    doi:10.1109/TAP.2013.2276912

    15. Barbuto, M., A. Monti, F. Bilotti, and A. Toscano, "Design of a non-foster actively loaded SRR and application in metamaterial-inspired components," IEEE Trans. Antennas Propagat., Vol. 61, No. 3, 1219-1227, Mar. 2013.
    doi:10.1109/TAP.2012.2228621

    16. Church, J., J.-C. S. Chieh, L. Xu, J. D. Rockway, and D. Arceo, "UHF electrically small box cage loop antenna with an embedded non-foster load," IEEE Antenna Wireless Propag. Lett., Vol. 13, 1329-1332, 2014.
    doi:10.1109/LAWP.2014.2337112

    17. Fan, Y. F., K. Z. Rajab, M. Munoz, and Y. Hao, "Electrically small half-loop antenna design with non-Foster matching networks," Proc. 6th European Conference on Antennas and Propagation (EUCAP), 126-129, 2011.

    18. Albarracín-Vargas, F., E. Ugarte-Muñoz, V. González-Posadas, and D. Segovia-Vargas, "Sensitivity analysis for active matched antennas with non-Foster elements," IEEE Trans. Antennas Propagat., Vol. 62, No. 12, 6040-6048, Dec. 2014.
    doi:10.1109/TAP.2014.2364811

    19. Garbacz, R. J. and R. Turpin, "A generalized expansion for radiated and scattered fields," IEEE Trans. Antennas Propagat., Vol. 19, No. 3, 348-358, May 1971.
    doi:10.1109/TAP.1971.1139935

    20. Harrington, R. F. and J. R. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Trans. Antennas Propagat., Vol. 19, No. 5, 622-628, Sep. 1971.
    doi:10.1109/TAP.1971.1139999

    21. Harrington, R. F. and J. R. Mautz, "Computation of characteristic modes for conducting bodies," IEEE Trans. Antennas Propagat., Vol. 19, No. 5, 629-639, Sep. 1971.
    doi:10.1109/TAP.1971.1139990

    22. Garbacz, R. J. and D. M. Pozar, "Antenna shape synthesis using characteristic modes," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 340-350, May 1982.
    doi:10.1109/TAP.1982.1142820

    23. Liu, D., R. J. Garbacz, and D. M. Pozar, "Antenna synthesis and optimization using generalized characteristic modes," IEEE Trans. Antennas Propagat., Vol. 38, No. 6, 62-868, Jun. 1990.
    doi:10.1109/8.55583

    24. Harrington, R. F. and J. R. Mautz, "Control of radar scattering by reactive loading," IEEE Trans. Antennas Propagat., Vol. 20, No. 4, 446-454, Jul. 1972.
    doi:10.1109/TAP.1972.1140234

    25. Adams, J. J. and J. T. Bernhard, "A modal approach to tuning and bandwidth enhancement of an electrically small antenna," IEEE Trans. Antennas Propagat., Vol. 59, No. 4, 1085-1092, Apr. 2011.
    doi:10.1109/TAP.2011.2109683

    26. Obeidat, K. A., B. D. Raines, and R. G. Rojas, "Discussion of series and parallel resonance phenomena in the input impedance of antennas," Radio Sci., Vol. 45, No. 6, RS6012, Dec. 2010.
    doi:10.1029/2010RS004353

    27. Linvill, J., "Transistor negative-impedance converters," Proc. IRE, Vol. 41, No. 6, 725-729, Jun. 1953.
    doi:10.1109/JRPROC.1953.274251

    28. Jacob, M. M., L. Jiang, and D. F. Sievenpiper, "Non-Foster loaded parasitic array for broadband steerable patterns," IEEE Trans. Antennas Propagat., Vol. 62, No. 12, 6081-6090, Dec. 2014.
    doi:10.1109/TAP.2014.2361903