Vol. 54

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-02-01

Higher Radial Modes of Azimuthal Surface Waves in Cylindrical Waveguides Without External Magnetic Field

By Igor O. Girka, Igor V. Omelchenko, and Richard D. Sydora
Progress In Electromagnetics Research M, Vol. 54, 1-7, 2017
doi:10.2528/PIERM16112103

Abstract

The properties of higher order radial modes of electromagnetic azimuthal surfacetype waves (ASW) which propagate in partially plasma-filled cylindrical waveguides without external magnetic field are analyzed using analytical and numerical techniques. For a waveguide with plasma surrounded by dielectric material and encased in metal, the eigenfrequencies for higher order radial modes are obtained. It is found that the ASW higher radial modes propagate with shorter vacuum wavelength than the zero-th order radial modes and that the more favourable conditions for higher order radial mode propagation are for ASW's with larger azimuthal wavenumber in waveguides with wider dielectric layer and larger dielectric constant. A further salient feature of ASW higher radial modes is that a change in plasma waveguide parameters causes a drastic change in ASW eigenfrequency in contrast to the zero-th order modes which have a smoother frequency variation with effective wavenumber.

Citation


Igor O. Girka, Igor V. Omelchenko, and Richard D. Sydora, "Higher Radial Modes of Azimuthal Surface Waves in Cylindrical Waveguides Without External Magnetic Field," Progress In Electromagnetics Research M, Vol. 54, 1-7, 2017.
doi:10.2528/PIERM16112103
http://jpier.org/PIERM/pier.php?paper=16112103

References


    1. Girka, V., I. Girka, and M. Thumm, Surface Flute Waves in Plasmas: Theory and Applications, Springer, Switzerland, 2014.
    doi:10.1007/978-3-319-02027-3

    2. Gradov, O. M. and L. Stenflo, "Linear theory of a cold bounded plasma," Physics Reports - Review Section of Phys. Lett., Vol. 94, 111-137, 1983.

    3. Gradov, O. M. and L. Stenflo, "Theory of nonlinear plasma surface waves," Journal of Plasma Physics, Vol. 65, 73-77, 2001.
    doi:10.1017/S0022377801008996

    4. Kudrin, A. V., E. Y. Petrov, G. A. Kyriacou, and T. M. Zaboronkova, "Insulated cylindrical antenna in a cold magnetoplasma," Progress In Electromagnetics Research, Vol. 53, 135-166, 2005.
    doi:10.2528/PIER04090101

    5. Alexeff, I., et al., "Recent results for plasma antennas," Physics of Plasmas, Vol. 15, 057104, 2008.
    doi:10.1063/1.2919157

    6. Anderson, T., Plasma Antennas, Artech House, Boston, London, 2011.

    7. Aliev, Y. M., H. Schluter, and A. Shivarova, Guided-wave-produced Plasmas, Springer, New-York, 2000.
    doi:10.1007/978-3-642-57060-5

    8. Sugai, H., I. Ghanashev, and M. Nagatsu, "High-density flat plasma production based on surface waves," Plasma Sources Science and Technology, Vol. 7, 192-205, 1998.
    doi:10.1088/0963-0252/7/2/014

    9. Ederra, I., J. C. Iriarte, R. Gonzalo, and P. de Maagt, "Surface waves of finite size electromagnetic band gap woodpile structures," Progress In Electromagnetics Research B, Vol. 28, 19-34, 2011.

    10. Anders, A., "Metal plasmas for the fabrication of nanostructures," Physics D: Applied Physics, Vol. 40, 2272-2284, 2007.
    doi:10.1088/0022-3727/40/8/S06

    11. Morrow, R., D. R. McKenzie, and M. M. Bilek, "Electric field effects on adsorption/desorption of proteins and colloidal particles on a gold film observed using surface plasmon resonance," Physica B: Condensed Matter, Vol. 394, 203-207, 2007.
    doi:10.1016/j.physb.2006.12.054

    12. Feltis, B. N., et al., "A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents," Biosensors and Bioelectronics, Vol. 23, 1131-1136, 2008.
    doi:10.1016/j.bios.2007.11.005

    13. Girka, V. O., I. O. Girka, and R. D. Sydora, "Azimuthally non-symmetric surface waves propagating in metal waveguides filled with isotropic plasma," Progress In Electromagnetics Research B, Vol. 61, 87-98, 2014.
    doi:10.2528/PIERB14062902

    14. Girka, V. O., I. O. Girka, A. N. Kondratenko, and V. I. Tkachenko, "Azimuthal surface waves of magnetoactive plasma wavequides," Soviet Journal of Communications Technology and Electronics, Vol. 33, 37-41, 1988.

    15. Girka, V. O. and I. O. Girka, "Coupled azimuthal surface waves in a nonuniform current - carrying plasma cylinder," Soviet Journal of Communications Technology and Electronics, Vol. 37, 23-29, 1992.

    16. Girka, V. O. and I. O. Girka, "Influence of plasma inhomogeneity on the spectra of azimuthal surface waves," Radiophysics and Quantum Electronics, Vol. 33, 516-517, 1990.

    17. Girka, V. O. and I. O. Girka, "Azimuthal surface waves in a nonuniform plasma cylinder," Radiophysics and Quantum Electronics, Vol. 34, 324-328, 1991.
    doi:10.1007/BF01080766

    18. Girka, V. O. and I. O. Girka, "Asymmetric long-wavelength surface modes of isotropic plasma waveguides," Plasma Physics Reports, Vol. 28, 682-689, 2002.
    doi:10.1134/1.1501325

    19. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, Washington, 1972.