Vol. 53
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-01-28
A Portable Frequency Domain Electromagnetic System for Shallow Metal Targets Detection
By
Progress In Electromagnetics Research M, Vol. 53, 167-175, 2017
Abstract
In this paper, a portable frequency domain electromagnetic system CEM-2 is presented for shallow metal targets detection. This paper discusses the detection principle of frequency domain electromagnetic system, introduces hardware implementation, presents test results of each module, and gives the system's imaging results in field tests. Sinusoidal pulse width modulation technique is employed in this system to produce single-frequency or multi-frequencies synthetic electromagnetic signals with signal to noise ratio of about 85 dB. After integration, the CEM-2 system's in-phase noise level is about 90 ppm while the quadrature response is about 100 ppm. The experiment results of CEM-2 agree well with the simulation ones both from signatures and amplitudes. The experiment for detecting targets of different sizes and materials conducted in field indicates that CEM-2 system can be used to distinguish metallic and ferrous objects.
Citation
Xiaodong Qu, Yade Li, Guangyou Fang, and Hejun Yin, "A Portable Frequency Domain Electromagnetic System for Shallow Metal Targets Detection," Progress In Electromagnetics Research M, Vol. 53, 167-175, 2017.
doi:10.2528/PIERM16111603
References

1. Nelson, H. H. and D. A. Steinhurst, "Enhanced UXO discrimination using frequency-domain electromagnetic induction,", Research Gate, Jul. 2007.
doi:10.1007/s10346-009-0187-y

2. Sharma, S. P., K. Anbarasu, S. Gupta, et al. "Integrated very low-frequency EM, electrical resistivity, and geological studies on the LantaKhola landslide, North Sikkim, India," Landslides, Vol. 7, No. 7, 43-53, Feb. 2010.

3. Manstein, Y. and A. Manstein, "EMI sensor NEMFIS: Method, equipment and case stories of archaeological prospection," Archéosciences, Vol. 33, No. 1, 321-324, Oct. 2009.
doi:10.1016/S0076-6895(08)00214-X

4. Zhdanov, M. S., "Electromagnetic methods in the frequency and time domains," Methods in Geochemistry & Geophysics, 649-693, Dec. 2009.

5. McNeill, J. D., "Electromagnetic terrain conductivity measurement at low induction numbers," Geonics Ltd, Technical Note TN-6, 1980.

6. McNeill, J. D., "Archaeological mapping using the Geonics EM38B to map Terrain Magnetic Susceptibility," Geonics Ltd, Technical Note TN-35, 2013.
doi:10.4133/JEEG1.2.129

7. Won, I. J., D. A. Keiswetter, G. R. A. Fields, et al. "GEM-2: A new multi-frequency electromagnetic sensor," Journal of Environmental & Engineering Geophysics, Vol. 1, No. 1, 129-138, Aug. 1996.
doi:10.4133/JEEG2.1.53

8. Won, I. J., D. A. Keiswetter, D. R. Hanson, et al. "GEM-3: A monostatic broadband electromagnetic induction sensor," Journal of Environmental & Engineering Geophysics, Vol. 2, No. 1, 53-64, Mar. 1997.
doi:10.1109/TGRS.2005.846862

9. Huang, H., B. Sanfilipo, and I. J. Won, "Planetary exploration using a small electromagnetic sensor," IEEE Transactions on Geoscience & Remote Sensing, Vol. 43, No. 7, 1499-1506, Aug. 2005.
doi:10.1109/TPEL.2010.2090901

10. Bradshaw, J., U. Madawala, and N. Patel, "Techniques for conditioning bit-stream signals for single-phase power electronics applications," IEEE Transactions on Power Electronics, Vol. 27, No. 3, 1414-1423, Mar. 2012.
doi:10.1088/0957-0233/22/7/075901

11. Gommé, L., G. Vandersteen, and Y. Rolain, "A high-speed on-chip pseudo-random binary sequence generator for multi-tone phase calibration," Measurement Science & Technology, Vol. 22, No. 7, 75901-75914, Jul. 2011.
doi:10.1080/09398368.2010.11463744

12. Renge, M., H. Suryawanshi, and M. Chaudhari, "Digitally implemented novel technique to approach natural sampling SPWM," EPE Journal, Vol. 20, No. 1, 13-20, Jan. 2010.