Vol. 53
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-01
Performance Characteristics of Non-Arc Double Stator Permanent Magnet Generator
By
Progress In Electromagnetics Research M, Vol. 53, 201-214, 2017
Abstract
The improvement in the power density in the double stator configurations is feasible with increase in the electrical loading of the electrical machines. This type of newer configuration is finding significant applications in improvising energy generation, more commonly for renewable energy generation. Various double stator configurations with non-arc permanent magnet machines for power density are modelled and analyzed in this paper. Finite Element Method (FEM) is used to simulate for the generation capability including the electromagnetics parameters such as flux linkage and open circuit voltage. A new slotted rotor structure is evolved based on the magnetic flux flow control inside the machine. The proposed structure is then fabricated in the laboratory and tested for operating characteristics with load circuit. The proposed machine produces a maximum power of 600 W at speed of 2000 rpm with 75% of maximum efficiency with the micro-hydro generation unit.
Citation
Rizuan Che Ahmad Suhairi, Raja Nor Firdaus, Nor Aishah Md Zuki, Fairul Azhar bin Abdul Shukor, Md Nazri Othman, Zulkiflie Ibrahim, and Chockalingam Aravind, "Performance Characteristics of Non-Arc Double Stator Permanent Magnet Generator," Progress In Electromagnetics Research M, Vol. 53, 201-214, 2017.
doi:10.2528/PIERM16111503
References

1. Chapman, S. J., Electric Machinery Fundamental (Power & Energy), 4th Ed., 533-557, McGraw Hill Higher Education, Singapore, 2005.

2. Feng, C., S. Cui, and S. Chen, "Performance analysis of double-stator starter generator for the hybrid electric vehicle," IEEE Transactions on Magnetics, Vol. 41, No. 1, 484-487, 2005.
doi:10.1109/TMAG.2004.839274

3. Chau, K. T., Y. B. Li, and J. Z. Jiang, "Design and analysis of a stator-doubly-fed-doubly-salient permanent-magnet machine for automotive engines," IEEE Transactions on Magnetics, Vol. 42, 3470-3472, 2006.
doi:10.1109/TMAG.2006.879440

4. Liu, C., K. T. Chau, J. Z. Jiang, and L. Jian, "Design a new outer-rotor permanent magnet hybrid machine for wind power generation," IEEE Transactions on Magnetics, Vol. 44, 1494-1497, 2008.
doi:10.1109/TMAG.2007.911036

5. Norhisam, M., M. Norafiza, and C. Y. Sia, "Double stator type permanent magnet generator," Proceeding of 2009 Student Conference on Research and Development (SCOReD), 316-319, 2009.
doi:10.1109/SCORED.2009.5443010

6. Wang, Y., S. Niu, and W. Fu, "Electromagnetic performance analysis of novel flux-regulatable permanent magnet machines for wide constant-power speed range operation," Energies, Vol. 8, 13971-13984, 2015.
doi:10.3390/en81212407

7. Norhisam, M., S. Ridzuan, R. N. Firdaus, C. V. Aravind, H. Wakiwaka, and M. Nirei, "Comparative evaluation on power-speed density of portable permanent magnet generator for agriculture applications," Progress In Electromagnetics Research, Vol. 129, 345-363, 2012.
doi:10.2528/PIER12050101

8. Zheng, P., Q. Wu, J. Bai, C. Tong, and Z. Song, "Analysis and experiment of a novel brushless double rotor machine for power-split hybrid electrical vehicle applications," Energies, Vol. 6, 3209-3223, 2009.

9. Vaithilingam, C. A., N. Misron, M. R. Zare, I. Aris, and M. H. Marhaban, "Computation of electromagnetic torque in a double rotor switched reluctance motor using flux tube methods," Energies, Vol. 5, 4008-4026, 2012.
doi:10.3390/en5104008

10. Norhisam, M., R. Suhairi, M. Norafiza, M. A. M Radzi, I. Aris, M. Nirei, and H. Wakiwaka, "Comparison on performance of a single phase and three phase double stator type permanent magnet generator," Asia-Pacific Symposium on Applied Electromagnetics and Mechanics, 231-234, Kuala Lumpur, 2010.

11. Norhisam, M., M. Norafiza, and C. Y. Sia, "Double stator type permanent magnet generator," Proceeding of 2009 Student Conference on Research and Development (SCOReD 2009), 316-319, UPM Serdang, Malaysia, Nov. 16-18, 2009.

12. Norhisam, M., M. Norafiza, M. Nirei, H. Wakiwaka, M. Syafiq, and I. Aris, "Comparison on performance of a single and double stator of a slot-less permanent magnet generator," 21st Symposium on Elctromagnetis and Dynamics, 561-564, 2009.

13. Raja, N. F., M. Norhisam, A. V. Chockalingam, M. Nirel, and W. Hiroyuki, "Improvement of energy density in single stator interior permanent magnet using double stator topology," Mathematical Problems in Engineering, Vol. 2014, 15 pages, Article ID 787382, 2014.

14. Zhang, D., S. Niu, K. T. Chau, J. Z. Jiang, and C. Liu, "Design and analysis of a double-stator cup-rotor PM integrated-starter-generator," Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, 20-26, 2006.
doi:10.1109/IAS.2006.256515

15. Niu, S., K. T. Chau, J. Z. Jiang, and C. Liu, "Design and control of a new double-stator cup-rotor permanent-magnet machine for wind power generation," IEEE Transactions on Magnetics, Vol. 43, 2501-2503, 2007.
doi:10.1109/TMAG.2007.893713

16. Niu, S., S. L. Ho, and W. N. Fu, "A novel direct-drive dual-structure permanent magnet machine," IEEE Transactions on Magnetics, Vol. 46, 2036-2039, 2010.
doi:10.1109/TMAG.2010.2041197

17. Wang, Y., M. Cheng, Y. Fan, and K. T. Chau, "A double-stator permanent magnet brushless machine system for electric variable transmission in hybrid electric vehicles," IEEE Vehicle Power and Propulsion Conference, 1-5, 2010.

18. Feng, C., S. Cui, and C. Kang, "Performance analysis of double-stator starter generator for the hybrid electric vehicle," 12th Symposium on Electromagnetic Launch Technology, 499-502, 2004.
doi:10.1109/ELT.2004.1398131

19. Alam, S. S., N. A. Omar, M. S. B. Ahmad, H. R. Siddiquei, and S. M. Nor, "Renewable energy in malaysia: Strategies and development," Environmental Management and Sustainable Development, Vol. 2, 51-66, 2013.

20. Firdaus, R. N., R. Suhairi, S. Farina, K. A. Karim, and Z. Ibrahim, "Improvement of power density spoke type permanent magnet generator," IEEE PEDS, 197-201, 2015.

21. Kim, S., II, J. Cho, S. Park, T. Park, and S. Lim, "Characteristics comparison of a conventional and modified spoke-type ferrite magnet motor for traction drives of low-speed electric vehicles," IEEE Transactions on Industry Applications, Vol. 49, 2516-2523, 2013.
doi:10.1109/TIA.2013.2264651

22. Kim, K.-C. and J. Lee, "The dynamic analysis of a spoke-type permanent magnet generator with large overhang," IEEE Transactions on Magnetics, Vol. 41, 3805-3807, 2005.

23. Wang, J., W. Wang, G. W. Jewell, and D. Howe, "Design of a miniature permanent-magnet generator and energy storage system," IEEE Transactions on Industrial Electronics, Vol. 52, No. 5, 1383-1390, 2005.
doi:10.1109/TIE.2005.855658

24. Boughrara, K., R. Ibtiouen, and N. Takorabet, "Analytic calculation of magnetic field and electromagnetic performances of spoke type IPM topologies with auxiliary magnets," International Conference on Electrical Machines (ICEM), Vol. 7, 51-57, 2014.

25. Hirata, K., Y. Kagami, M. Yanosaka, Y. Ishihari, and T. Todaka, "Thrust calculation of linear pulse motors using a combined technique employing the finite element method and the permeance analysis method," IEEE Transactions on Magnetics, Vol. 28, No. 2, 1394-1397, 1992.
doi:10.1109/20.123953

26. Delforge, C. and B. Lemaire-Semail, "Induction machine modeling using finite element and permeance network methods," IEEE Transactions on Magnetics, Vol. 31, No. 3, 2092-2095, 1995.
doi:10.1109/20.376457

27. Wang, X., Q. Li, S. Wang, and Q. Li, "Analytical calculation of air-gap magnetic field distribution and instantaneous characteristics of brushless DC motors," IEEE Transactions on Energy Conversion, Vol. 18, No. 3, 424-432, 2002.
doi:10.1109/TEC.2003.815852