Vol. 54

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-02-17

Profile Reconstruction Utilizing Forward-Backward Time-Stepping with the Integration of Automated Edge-Preserving Regularization Technique for Object Detection Applications

By Guang Yong, Kismet Anak Hong Ping, Shafrida Sahrani, Mohamad Hamiruce Marhaban, Mohd Iqbal Sariphn, Toshifumi Moriyama, and Takashi Takenaka
Progress In Electromagnetics Research M, Vol. 54, 125-135, 2017
doi:10.2528/PIERM16111001

Abstract

A regularization is integrated with Forward-Backward Time-Stepping (FBTS) method which is formulated in time-domain utilizing Finite-Difference Time-Domain (FDTD) method to solve the nonlinear and ill-posed problem arisen in the microwave inverse scattering problem. FBTS method based on a Polak-Ribiète-Polyak conjugate gradient method is easily trapped in the local minima. Thus, we extend our work with the integration of edge-preserving regularization technique due to its ability to smooth and preserve the edges containing important information for reconstructing the dielectric profiles of the targeted object. In this paper, we propose a deterministic relaxation with Mean Square Error algorithm known as DrMSE in FBTS and integrate it with the automated edge-preserving regularization technique. Numerical simulations are carried out and prove that the reconstructed results are more accurate by calculating the edge-preserving parameter automatically.

Citation


Guang Yong, Kismet Anak Hong Ping, Shafrida Sahrani, Mohamad Hamiruce Marhaban, Mohd Iqbal Sariphn, Toshifumi Moriyama, and Takashi Takenaka, "Profile Reconstruction Utilizing Forward-Backward Time-Stepping with the Integration of Automated Edge-Preserving Regularization Technique for Object Detection Applications," Progress In Electromagnetics Research M, Vol. 54, 125-135, 2017.
doi:10.2528/PIERM16111001
http://jpier.org/PIERM/pier.php?paper=16111001

References


    1. Pastorino, M., Microwave Imaging, 1st Ed., John Wiley, Hoboken, N.J., 2010.
    doi:10.1002/9780470602492

    2. Kim, Y. J., L. Jofre, F. De Flaviis, and M. Q. Feng, "Microwave reflection tomographic array for damage detection of civil structures," IEEE Trans. Antennas Propag., Vol. 51, No. 11, 3022-3032, 2003.
    doi:10.1109/TAP.2003.818786

    3. Benedetti, M., M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, "An innovative microwave-imaging technique for nondestructive evaluation: Applications to civil structures monitoring and biological bodies inspection," IEEE Trans. Instrum. Meas., Vol. 55, 1878-1884, 2006.
    doi:10.1109/TIM.2006.884287

    4. Langenberg, K. J., K. Mayer, and R. Marklein, "Nondestructive testing of concrete with electromagnetic and elastic waves: Modeling and imaging," Cem. Concr. Compos., Vol. 28, No. 4, 370-383, 2006.
    doi:10.1016/j.cemconcomp.2006.02.010

    5. Randazzo, A. and C. Estatico, "A regularisation scheme for electromagnetic inverse problems: Application to crack detection in civil structures," Nondestruct. Test. Eval., Vol. 27, No. 3, 189-197, 2012.
    doi:10.1080/10589759.2012.665920

    6. Qaddoumi, N., R. Zoughi, and G. W. Carriveau, "Microwave detection and depth determination of disbonds in low-permittivity and low-loss thick sandwich composites," Res. Nondestruct. Eval., Vol. 8, No. 1, 51-63, 1996.
    doi:10.1080/09349849609409587

    7. Kharkovsky, S. and R. Zoughi, "Microwave and millimeter wave nondestructive testing and evaluation - Overview and recent advances," IEEE Instrum. Meas. Mag., Vol. 10, No. 2, 26-38, 2007.
    doi:10.1109/MIM.2007.364985

    8. Zoughi, R. and S. Kharkovsky, "Microwave and millimetre wave sensors for crack detection," Fatigue Fract. Eng. Mater. Struct., Vol. 31, No. 8, 695-713, 2008.
    doi:10.1111/j.1460-2695.2008.01255.x

    9. Deng, Y. and X. Liu, "Electromagnetic imaging methods for nondestructive evaluation applications," Sensors, Vol. 11, No. 12, 11774-11808, 2011.
    doi:10.3390/s111211774

    10. Zoughi, R., Microwave Non-destructive Testing and Evaluation, Kluwer, The Netherlands, 2000.
    doi:10.1007/978-94-015-1303-6

    11. Pastorino, M., "Recent inversion procedures for microwave imaging in biomedical, subsurface detection and nondestructive evaluation applications," Measurement: Journal of the International Measurement Confederation, Vol. 36, No. 3-4, 257-269, 2004.
    doi:10.1016/j.measurement.2004.09.006

    12. Pastorino, M. and A. Randazzo, "Buried object detection by an inexact newton method applied to nonlinear inverse scattering," Int. J. Microw. Sci. Technol., Vol. 2012, 2012.

    13. Estatico, C., A. Fedeli, M. Pastorino, and A. Randazzo, "Buried object detection by means of a Lp Banach-space inversion procedure," Radio Sci., Vol. 50, No. 1, 41-51, Jan. 2015.
    doi:10.1002/2014RS005542

    14. Rufus, E. and Z. C. Alex, "Microwave imaging system for the detection of buried objects using UWB antenna - An experimental study," PIERS Proceedings, 786-788, Kuala Lumpur, Malaysia, Mar. 27-30, 2012.

    15. Hagness, S. C., "Microwave imaging in medicine: Promises and future challenges," Proc. URSI Gen. Assem., 53706, 2008.

    16. Semenov, S., "Microwave tomography: Review of the progress towards clinical applications," Philos. Trans. A. Math. Phys. Eng. Sci., Vol. 367, 3021-3042, 2009.
    doi:10.1098/rsta.2009.0092

    17. Meaney, P. M., K. D. Paulsen, and D. College, "Challenges on microwave imaging supported by clinical results," Proc. Int. Work. Biol. Eff. Electromagn. Fields, 10-14, 2010.

    18. Hassan, M. and A. M. El-Shenawee, "Review of electromagnetic techniques for breast cancer detection," IEEE Rev. Biomed. Eng., Vol. 4, 103-118, 2011.
    doi:10.1109/RBME.2011.2169780

    19. Wei, N. S., K. A. H. Ping, L. S. Yee, W. A. B. W. Zainal Abidin, T. Moriyama, and T. Takenaka, "Reconstruction of extremely dense breast composition utilizing inverse scattering technique integrated with frequency-hopping approach," ARPN J. Eng. Appl. Sci., Vol. 10, No. 18, 8479-8484, 2015.

    20. Salvad, A., M. Pastorino, R. Monleone, A. Randazzo, T. Bartesaghi, G. Bozza, and S. Poretti, "Microwave imaging of foreign bodies inside wood trunks," IST 2008 - IEEE Workshop on Imaging Systems and Techniques Proceedings, 88-93, 2008.
    doi:10.1109/IST.2008.4659947

    21. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer, New York, 2012.

    22. Massa, A., D. Franceschini, G. Franceschini, M. Pastorino, M. Raffetto, and M. Donelli, "Parallel GA-based approach for microwave imaging applications," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3118-3127, 2005.
    doi:10.1109/TAP.2005.856311

    23. Donelli, M. and A. Massa, "A computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 5, 1761-1776, 2005.
    doi:10.1109/TMTT.2005.847068

    24. Rekanos, I. T., "Time-domain inverse scattering using Lagrange multipliers: An iterative FDTD-based optimization technique," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 271-289, 2003.
    doi:10.1163/156939303322235824

    25. Winters, D. W., E. J. Bond, B. D. Van Veen, and S. C. Hagness, "Estimation of the frequency-dependent average dielectric properties of breast tissue using a time-domain inverse scattering technique," IEEE Trans. Antennas Propagat., Vol. 54, No. 11, 3517-3528, 2006.
    doi:10.1109/TAP.2006.884296

    26. Takenaka, T., H. Jia, and T. Tanaka, "Microwave imaging of electrical property distributions by a forward-backward time-stepping method," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 12, 1609-1626, 2000.
    doi:10.1163/156939300X00383

    27. Takenaka, T., T. Tanaka, H. Harada, and S. He, "FDTD approach to time-domain inverse scattering problem for stratified lossy media," Microw. Opt. Technol. Lett., Vol. 16, No. 5, 292-296, 1997.
    doi:10.1002/(SICI)1098-2760(19971205)16:5<292::AID-MOP8>3.0.CO;2-A

    28. Ping, K. A. H., T. Moriyama, T. Takenaka, and T. Tanaka, "Two-dimensional forward-backward time-Stepping approach for tumor detection in dispersive breast tissues," 2009 Mediterranean Microw. Symp. (MMS), 1-4, 2009.

    29. Blanc-Feraud, L., P. Charbonnier, G. Aubert, and M. Barlaud, "Nonlinear image processing: Modeling and fast algorithm for regularization with edge detection," Proc. IEEE-ICIP, 474-477, 1995.

    30. Lobel, P., C. Picbota, L. Blanc Feraud, and M. Barlaud, "Conjugate gradient algorithm with edge-preserving regularization for image reconstruction from experimental data," IEEE Antennas Propag. Soc. Int. Symp. 1996, AP-S. Dig., Vol. 1, 644-647, 1996.
    doi:10.1109/APS.1996.549680

    31. Chew Chie, A. S., K. A. Hong Ping, Y. Guang, N. S. Wei, and N. Rajaee, "Preliminary results of integrating Tikhonov's regularization in Forward-Backward Time-Stepping technique for object detection," Appl. Mech. Mater., Vol. 833, 170-175, Apr. 2016.
    doi:10.4028/www.scientific.net/AMM.833.170

    32. Kaltenbacher, B., A. Kirchner, and B. Vexler, "Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems," Inverse Probl., Vol. 27, No. 12, 125008, Dec. 2011.
    doi:10.1088/0266-5611/27/12/125008

    33. Qin, Y. M. and I. R. Ciric, "Dielectric body reconstruction with current modelling and Tikhonov regularisation," Electron. Lett., Vol. 29, No. 16, 1427, 1993.
    doi:10.1049/el:19930956

    34. Calvetti, D., S. Morigi, L. Reichel, and F. Sgallari, "Tikhonov regularization and the L-curve for large discrete ill-posed problems," J. Comput. Appl. Math., Vol. 123, 423-446, 2000.
    doi:10.1016/S0377-0427(00)00414-3

    35. Charbonnier, P., L. Blanc-Féraud, G. Aubert, and M. Barlaud, "Deterministic edge-preserving regularization in computed imaging," IEEE Trans. Image Process., Vol. 6, No. 2, 298-311, 1997.
    doi:10.1109/83.551699

    36. Yong, G., K. A. H. Ping, A. S. C. Chie, S. W. Ng, and T. Masri, "Preliminary study of Forward-Backward Time-Stepping technique with edge-preserving regularization for object detection applications," 2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS), 77-81, 2015.
    doi:10.1109/ICBAPS.2015.7292222

    37. Hadamard, J., "Lectures on Cauchy's problem in linear partial differential equations," Physiology, 334, 1923.

    38. Hebert, T. and R. Leahy, "A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors," IEEE Trans. Med. Imaging, 194-202, 1989.
    doi:10.1109/42.24868

    39. Green, P. J., "Bayesian reconstructions from emission tomography data using a modified EM algorithm," IEEE Trans. Med. Imaging, Vol. 9, No. 1, 84-93, Mar. 1990.
    doi:10.1109/42.52985

    40. Geman, S. and D. E. M. Clure, "Bayesian image analysis: An application to single photon emission tomography," Proc. Stat. Comput. Sect., 12-18, 1985.

    41. Aubert, G., M. Barlaud, L. Blanc-Feraud, and P. Charbonnier, "A deterministic algorithm for edge-preserving computed imaging using Legendre transform," Proceedings of the 12th IAPR International Conference on Pattern Recognition (Cat. No. 94CH3440-5), 188-191, 1994.
    doi:10.1109/ICPR.1994.577154

    42. Charbonnier, P., L. Blanc-Feraud, G. Aubert, and M. Barlaud, "Two deterministic half-quadratic regularization algorithms for computed imaging," Proceedings of 1st International Conference on Image Processing, Vol. 2, 168-172, 1994.