Vol. 53
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-01-15
Efficient Analysis of Multilayered Dielectric Rods by Equivalent Microwave Network Method
By
Progress In Electromagnetics Research M, Vol. 53, 89-98, 2017
Abstract
Multilayered dielectric rods are widely used, and the analysis of their electromagnetic scattering properties is very important in practical design. Based on our former work on the single layer dielectric rod forest, the equivalent microwave network method (EMN) is applied to analyse the concentric and eccentric multilayered dielectric rods in this article. The key step is to obtain the reflection matrix of the multilayered dielectric. Based on the EMN method, the electromagnetic scattering properties of a novel electromagnetic band gap (EBG) structure are calculated. The EBG structure is formed by periodically embedding multilayered dielectric rods into the original dielectric between power/ground planes. The accuracy and efficiency of the EMN method are verified by comparing with the simulation results by the FIT simulator CST. In addition, the EMN method takes about 1 minute to obtain the results, while the simulator takes nearly 20 hours with the same computer.
Citation
Liangqi Gui, Cong Zhou, Xinxin Tian, Fan Yang, and Yao Jiang Zhang, "Efficient Analysis of Multilayered Dielectric Rods by Equivalent Microwave Network Method," Progress In Electromagnetics Research M, Vol. 53, 89-98, 2017.
doi:10.2528/PIERM16110803
References

1. Oo, Z. Z., E. X. Liu, E. P. Li, and Y. J. Zhang, "Computing the RCS of dielectric coated objects using multilevel fast multipole algorithm: Impedance boundary condition approach," International Conference on Computational Electromagnetics and ITS Applications, 2004, Proceedings, ICCEA, 100-103, 2004.

2. Lee, S. C., "Scattering by closely spaced parallel nonhomogeneous cylinders in an absorbing medium," Journal of the Optical Society of America A, Vol. 28, No. 9, 1812-1819, 2011.
doi:10.1364/JOSAA.28.001812

3. Leviatan, Y. and A. Boag, "Analysis of electromagnetic scattering from dielectrically coated conducting cylinders using a multifilament current model," IEEE Transactions on Antennas & Propagation, Vol. 35, No. 11, 1119-1127, 1987.
doi:10.1109/TAP.1987.1143994

4. Barabls, M., "Scattering of a plane wave by a radially stratified tilted cylinder," Journal of the Optical Society of America A, Vol. 4, No. 12, 2240-2248, 1987.
doi:10.1364/JOSAA.4.002240

5. Lee, S. C. and J. A. Grzesik, "Light scattering by closely spaced parallel cylinders embedded in a semi-infinite dielectric medium," Journal of the Optical Society of America A, Vol. 15, No. 1, 163-173, 1998.
doi:10.1364/JOSAA.15.000163

6. Yasumoto, K., V. Jandieri, and B. Gupta, "Electromagnetic scattering by cylindrical arrays of circular rods," IEEE Transactions on Antennas & Propagation, Vol. 59, No. 6, 312-315, 2009.

7. Kishk, A. A., R. P. Parrikar, and A. Z. Elsherbeni, "Electromagnetic scattering from an eccentric multilayered circular cylinder," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 3, 295-303, 1992.
doi:10.1109/8.135472

8. Stratigaki, L. G., "Scattering from a dielectric cylinder with multiple eccentric cylindrical dielectric inclusions," IEE Proceedings - Microwaves Antennas and Propagation, Vol. 143, No. 6, 505-511, 1996.
doi:10.1049/ip-map:19960854

9. Ioannidou, M. P., K. D. Kapsalas, and D. P. Chrissoulidis, "Electromagnetic-wave scattering by an eccentrically stratified, dielectric cylinder with multiple, eccentrically stratified, cylindrical, dielectric inclusions," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 495-516, 2004.
doi:10.1163/156939304774113098

10. Jarem, J. M., "Rigorous coupled wave analysis of bipolar cylindrical systems: Scattering from inhomogeneous dielectric material, eccentric, composite circular cylinders," Progress In Electromagnetics Research, Vol. 18, No. 1, 181-237, 2003.
doi:10.2528/PIER03042304

11. Jarem, J. M., "Rigorous coupled wave theory of anisotropic, azimuthally-inhomogeneous cylindrical systems," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 911-912, 2012.

12. Jarem, J. M., "Rigorous coupled wave analysis of radially and azimuthally-inhomogeneous, elliptical, cylindrical systems," Progress In Electromagnetics Research, Vol. 15, 89-115, 2001.
doi:10.2528/PIER01032302

13. Zhang, Y. J. and J. Fan, "A generalized multiple scattering method for dense vias with axially anisotropic modes in an arbitrarily shaped plate pair," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 7, 2035-2045, 2012.
doi:10.1109/TMTT.2012.2195195

14. Tian, X., Y. J. Zhang, D. Liu, and L. Gui, "Efficient analysis of power/ground planes loaded with dielectric rods and decoupling capacitors by extended generalized multiple scattering method," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 1, 135-144, 2015.
doi:10.1109/TEMC.2014.2364269

15. Balanis, C. A. and J. Wiley, Advanced Engineering Electromagnetics, Wiley & Sons, Canada, 1989.