Vol. 52
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-12-13
Specific RCS for Describing the Scattering Characteristic of Complex Shape Objects
By
Progress In Electromagnetics Research M, Vol. 52, 191-200, 2016
Abstract
Nowadays it is important to create military and civilian vehicles which would be invisible to radar (or homing precision weapons). Such a task requires using high amount of radio-absorbing materials and high cost of finished samples of re-engineering. So it is very useful to have some methods for mathematical modeling of electromagnetic waves scattering on the object in order to take into account various techniques to reduce the object visibility at the stage of design. After the mathematical modeling for each case (specified wavelength, polarization, background surface, etc.), we obtain the angular RCS dependence. We obtain such dependencies for two different models. Based on the comparison of these two dependencies for different objects, it is very difficult to determine which one of the objects is more detectable. This paper presents a new calculation method which allows characterizing the scattering properties of each object only with a few numbers: specific RCS (same as normalized RCS) and RCS dispersion. The presented method can be simply used to assess the visibility of the objects placed on different background surfaces.
Citation
Mariya S. Antyufeyeva, Alexander Butrym, Nikolay N. Kolchigin, Maxim N. Legenkiy, Alexander A. Maslovskiy, and Gennady G. Osinovy, "Specific RCS for Describing the Scattering Characteristic of Complex Shape Objects," Progress In Electromagnetics Research M, Vol. 52, 191-200, 2016.
doi:10.2528/PIERM16042907
References

1. Taravati, S. and A. Abdolali, "A new three-dimensional conical ground-plane cloak with homogeneous materials," Progress In Electromagnetics Research M, Vol. 19, 91-104, 2011.
doi:10.2528/PIERM11051004

2. Wu, T. K., "From cloaking of conducting cylinder to RCS reduction/enhancement," Radio Science Meeting (Joint with AP-S Symposium), USNC-URSI, 133, IEEE, 2013.
doi:10.1109/USNC-URSI.2013.6715439

3. Maslovskiy, A. and M. Legenkiy, "Geometrical techniques for reducing radar targets detectability," Proceedings of Conference on Radiophysics, Electronics and Biophysics YSC, Kharkiv, 2014.

4. Bouzidi, A. and T. Aguili, "RCS prediction from planar near-field measurements," Progress In Electromagnetics Research M, Vol. 22, 41-55, 2012.
doi:10.2528/PIERM11101005

5. Baussard, A., M. Rochdi, and A. Khenchaf, "PO/mec-based scattering model for complex objects on a sea surface," Progress In Electromagnetics Research, Vol. 111, 229-251, 2011.
doi:10.2528/PIER10083005

6. Borzov, A., A. Sokolov, and V. Suchkov, "Digital simulation of input signals of systems of a near radar-location from complex radar-tracking scenes," Radio Electronics Magazine, 2004 (in Russian).

7. Youssef, N., "Radar cross section of complex targets," Proceedings of the IEEE, Vol. 77, 722-734, May 1989.
doi:10.1109/5.32062

8. Sukharevsky, O. I., Electromagnetic Wave Scattering by Aerial and Ground Radar Objects, 288, Taylor & Francis Group, CRC Press, 2015.

9. De Adana, F. S., I. Gonzalez, O. Gutierrez, and M. F. Catedra, "Asymptotic method for analysis of RCS of arbitrary targets composed by dielectric and/or magnetic materials," IEEE Proceedings - Radar, Sonar and Navigation, Vol. 150, No. 5, 375-378, 2003.
doi:10.1049/ip-rsn:20030508

10. Ling, H., R.-C. Chou, and S.-W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity," IEEE Trans. Antennas Propagat., Vol. 37, No. 2, 194-205, 1989.
doi:10.1109/8.18706

11. Boag, E. M., "A fast physical optics (FPO) algorithm for double-bounce scattering," IEEE Trans. Antennas Propagat., Vol. 52, 205-212, 2004.
doi:10.1109/TAP.2003.822428

12. Boag, A., "A fast physical optics (FPO) algorithm for high frequency scattering," IEEE Trans. Antennas Propagat., Vol. 52, 197-204, 2004.
doi:10.1109/TAP.2003.822426

13. Bhalla, R., H. Ling, J. Moore, D. J. Andersh, S. W. Lee, and J. Hughes, "3D scattering center representation of complex targets using the shooting and bouncing ray technique: A review," IEEE Antennas Propagat. Mag., Vol. 40, 30-39, 1998.
doi:10.1109/74.735963

14. Tao, Y. B., H. Lin, and H. J. Bao, "Kd-tree based fast ray tracing for RCS prediction," Progress In Electromagnetics Research, Vol. 81, 329-341, 2008.
doi:10.2528/PIER08011305

15. Gao, P. C., Y. B. Tao, Z. H. Bai, and H. Lin, "Mapping the sbr and tw-ildcs to heterogeneous cpu-gpu architecture for fast computation of electromagnetic scattering," Progress In Electromagnetics Research, Vol. 122, 137-154, 2012.

16. Rius, M., M. Ferrando, and L. Jofre, "GRECO: Graphical electromagnetic computing for RCS prediction in real time," IEEE Antennas Propagat. Mag., Vol. 35, 7-17, 1993.
doi:10.1109/74.207645

17. Man, M., Z. Lei, Y. Xie, and X. Li, "Bistatic RCS prediction of composite scattering from electrically very large ship-sea geometry with a hybrid facet-based ka and shadow-corrected greco scheme," Progress In Electromagnetics Research B, Vol. 60, 35-48, 2014.
doi:10.2528/PIERB14021003

18. Cocheril, Y. and R. Vauzelle, "A new ray-tracing based wave propagation model including rough surfaces scattering," Progress In Electromagnetics Research, Vol. 75, 357-381, 2007.
doi:10.2528/PIER07061202

19. Du, Y. and B. Liu, "A numerical method for electromagnetic scattering from dielectric rough surfaces based on the stochastic second degree method," Progress In Electromagnetics Research, Vol. 97, 327-342, 2009.
doi:10.2528/PIER09092501

20. Kulemin, G. P. and E. V. Tarnavskiy, "Modeling of interference map from ground surface for MMR radar stations for small angles sliding," Radioelectronic and Computer Systems, No. 1, 5-12, 2004.

21. Kulemin, G. P. and E. V. Tarnavskiy, "Modeling of interference map from ground surface for MMR radar stations for small angles sliding," Radioelectronic and Computer Systems, No. 1, 5-12, 2004.

21. Kovalev, S., S. Nesterov, and I. Skorodumov, "Determination RCS of objects with a glance of reflection from earth surface," Radiotechniques and Electronics, Vol. 41, No. 11, 1304-1310, 1996 (in Russian).

22. Akinshin, R., A. Khudyakov, V. Rumyantsev, and S. Kurbatsky, "Evaluating the effectiveness of algorithms polarization selection stationary ground objects," Radio Electronics Magazine, Vol. 4, 2013 (in Russian).

23. Legenkiy, M., A. Butrym, and M. Antyufeyeva, "Evaluation of on-ground object radar detectability reduction," Proceedings of the Conference Mathematical Methods in Electromagnetic Theory, 254-257, Dnipropetrovsk, Aug. 26-28, 2014.

24. Swerling, P., "Probability of detection for fluctuating targets," IRE Transactions on Information Theory, Vol. 6, No. 2, 269-308, 1960.
doi:10.1109/TIT.1960.1057561

25. Bergamaschi, L., G. D'Agostino, L. Giordani, G. Mana, and M. Oddone, "The detection of signals buried in noise," Data Analysis, Statistics and Probability, 1-12, 2013.

26. Shi, W., X.-W. Shi, and L. Xu, "RCS characterization of stealth target using χ2 distribution and lognormal distribution," Progress In Electromagnetics Research M, Vol. 27, 1-10, 2012.
doi:10.2528/PIERM12091212

27. Zhuang, Y.-Q., C.-X Zhang, and X.-K. Zhang, "Accurate statistical modeling method for dynamic RCs," PIERS Proceedings, 1135-1139, Guangzhou, Aug. 25-28, 2014.

28. Corbel, C., C. Bourlier, N. Pinel, and J. Chauveau, "Rough surface RCS measurements and simulations using the physical optics approximation," IEEE Trans. Antennas Propagat., Vol. 61, No. 10, 5155-5165, Oct. 2013.
doi:10.1109/TAP.2013.2265253

29. Maslovskiy, A. A. and M. N. Legenkiy, "Analysis of geometrical techniques for reducing radar detectability of on-ground targets," Proceedings of the International Young Scientist Forum on Applied Physics, (YSF'2015), 1-4, Dnipropetrovsk, Sep. 29-Oct. 1, 2015.

30. Kobak, V., "Radar reflectors," Soviet Radio, 248, Moscow, 1975 (in Russian).

31. Wang, X., C.-F.Wang, Y.-B. Gan, and L.-W. Li, "Electromagnetic scattering from a circular target above or below rough surface," Progress In Electromagnetics Research, Vol. 40, 207-227, 2003.
doi:10.2528/PIER02111901