Vol. 49
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-07-15
Extracting Surface Macro Basis Functions from Low-Rank Scattering Operators with the ACA Algorithm
By
Progress In Electromagnetics Research M, Vol. 49, 51-60, 2016
Abstract
The Adaptive Cross Approximation (ACA) algorithm has been used to compress the rank-deficient sub-blocks of the matrices that arise in the numerical solution of integral equations (IEs) with the Method of Moments. In the context of the linear embedding via Green's operator (LEGO) method - a domain decomposition technique based on IEs - an electromagnetic problem is modelled by combining ``bricks'' in turn described by scattering operators which, in many situations, are singular. As a result, macro basis functions defined on the boundary of a brick can be generated by applying the ACA to a scattering operator. Said functions allow compressing the weak form of the LEGO functional equations which then use up less computer memory and are faster to invert.
Citation
Vito Lancellotti, "Extracting Surface Macro Basis Functions from Low-Rank Scattering Operators with the ACA Algorithm," Progress In Electromagnetics Research M, Vol. 49, 51-60, 2016.
doi:10.2528/PIERM16042803
References

1. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, Piscataway, 1998.

2. Harrington, R. F., Field Computation by Moment Methods, MacMillan, New York, 1968.

3. Zienkiewicz, O. C., The Finite Element Method in Engineering Science, McGraw-Hill, London, 1971.

4. Adams, R. J., "Physical and analytical properties of a stabilized electric field integral equation," IEEE Trans. Antennas Propag., Vol. 52, 362-372, Feb. 2004.
doi:10.1109/TAP.2004.823957

5. Andriulli, F., K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen, "A multiplicative Calderon preconditioner for the electric field integral equation," IEEE Trans. Antennas Propag., Vol. 56, 2398-2412, Aug. 2008.
doi:10.1109/TAP.2008.926788

6. Stephanson, M. B. and J.-F. Lee, "Preconditioned electric field integral equation using Calderon identities and dual loop/star basis functions," IEEE Trans. Antennas Propag., Vol. 57, 1274-1279, Apr. 2009.
doi:10.1109/TAP.2009.2016173

7. Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "The fast multipole method (FMM) for electromagnetic problems," IEEE Trans. Antennas Propag., Vol. 40, 634-641, Jun. 1992.
doi:10.1109/8.144597

8. Hackbusch, W., "A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices," Computing, Vol. 62, No. 2, 89-108, 1999.
doi:10.1007/s006070050015

9. Kron, G., "A set of principles to interconnect the solutions of physical systems," Journal of Applied Physics, Vol. 24, No. 8, 965-980, 1953.
doi:10.1063/1.1721447

10. Li, M.-K. and W. C. Chew, "Wave-field interaction with complex structures using equivalence principle algorithm," IEEE Trans. Antennas Propag., Vol. 55, 130-138, Jan. 2007.
doi:10.1109/TAP.2006.888453

11. Shao, H., J. Hu, W. Lu, H. Guo, and Z. Nie, "Analyzing large-scale arrays using tangential equivalence principle algorithm with characteristic basis functions," Proceedings of the IEEE, Vol. 101, 414-422, Feb. 2013.
doi:10.1109/JPROC.2012.2193652

12. Maaskant, R., R. Mittra, and A. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Trans. Antennas Propag., Vol. 56, 3440-3451, Nov. 2008.

13. Xiao, G., J.-F. Mao, and B. Yuan, "A generalized surface integral equation formulation for analysis of complex electromagnetic systems," IEEE Trans. Antennas Propag., Vol. 57, 701-710, Mar. 2009.
doi:10.1109/TAP.2009.2013425

14. Ylä-Oijala, P. and M. Taskinen, "Electromagnetic scattering by large and complex structures with surface equivalence principle algorithm," Waves in Random and Complex Media, Vol. 19, 105-125, Feb. 2009.
doi:10.1080/17455030802585365

15. Olćan, D. I., I. M. Stevanović, J. R. Mosig, and A. R. Djordjević, "Diakoptic approach to analysis of multiconductor transmission lines," Microwave and Optical Technology Letters, Vol. 50, No. 4, 931-936, 2008.
doi:10.1002/mop.23246

16. Stevanović, I. M. and J. R. Mosig, "Efficient evaluation of macro-basis-function reaction terms in the subdomain multilevel approach," Microwave and Optical Technology Letters, Vol. 42, No. 2, 138-143, 2004.
doi:10.1002/mop.20232

17. Craeye, C., J. Laviada, R. Maaskant, and R. Mittra, "Macro basis function framework for solvingMaxwell’s equations in surface-integral-equation form," Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), Vol. 3, 1-16, May 2014, Online at www.efermat.org.

18. Lucente, E., A. Monorchio, and R. Mittra, "An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Trans. Antennas Propag., Vol. 56, 999-1007, Apr. 2008.
doi:10.1109/TAP.2008.919166

19. Zhang, B., G. Xiao, J. Mao, and Y.Wang, "Analyzing large-scale non-periodic arrays with synthetic basis functions," IEEE Trans. Antennas Propag., Vol. 58, 3576-3584, Nov. 2010.

20. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "An eigencurrent approach to the analysis of electrically large 3-D structures using linear embedding via Green’s operators," IEEE Trans. Antennas Propag., Vol. 57, 3575-3585, Nov. 2009.

21. Van de Water, A. M., "LEGO: Linear Embedding via Green’s Operators,", Ph.D. thesis, Technische Universiteit Eindhoven, 2007.

22. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "Scattering from large 3-D piecewise homogeneous bodies through linear embedding via Green’s operators and Arnoldi basis functions," Progress In Electromagnetics Research, Vol. 103, 305-322, Apr. 2010.
doi:10.2528/PIER10032915

23. Lancellotti, V. and A. G. Tijhuis, "Extended linear embedding via Green’s operators for analyzing wave scattering from anisotropic bodies," International Journal of Antennas and Propagation, 11 pages, Article ID 467931, 2014.

24. Lancellotti, V. and D. Melazzi, "Hybrid LEGO-EFIE method applied to antenna problems comprised of anisotropic media," Forum in Electromagnetic Research Methods and Application Technologies (FERMAT), Vol. 6, 1-19, 2014, Online at www.e-fermat.org.

25. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "On the convergence of the eigencurrent expansion method applied to linear embedding via Green’s operators (LEGO)," IEEE Trans. Antennas Propag., Vol. 58, 3231-3238, Oct. 2010.

26. Bebendorf, M., "Approximation of boundary element matrices," Numer. Matematik, Vol. 86, No. 4, 565-589, 2000.
doi:10.1007/PL00005410

27. Lancellotti, V. and R. Maaskant, "A comparison of two types of macro basis functions defined on LEGO electromagnetic bricks," 9th European Conference on Antennas and Propagation (EuCAP 2015), Lisbon, Portugal, Apr. 2015.

28. Lancellotti, V., "Fast generation of macro basis functions for LEGO through the adaptive cross approximation," International Conference on Electromagnetics in Advanced Applications (ICEAA 2015), Turin, Italy, Sept. 2015, invited paper.

29. Zhao, K., M. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Trans. Electromag. Compat., Vol. 47, 763-773, Nov. 2005.
doi:10.1109/TEMC.2005.857898

30. Maaskant, R., R. Mittra, and A. G. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Trans. Antennas Propag., Vol. 56, 3440-3451, Nov. 2008.

31. Maaskant, R. and V. Lancellotti, "Field computations through the ACA algorithm," 9th European Conference on Antennas and Propagation (EuCAP 2015), Lisbon, Portugal, Apr. 2015.

32. Collin, R. E., Field Theory of Guided Waves, IEEE Press, Piscataway, 1991.

33. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran, 2nd Ed., Cambridge University Press, Cambridge, 1994.

34. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "Analysis of antennas in the presence of large composite 3-D structures with linear embedding via Green’s operators (LEGO) and a modified EFIE," 4th European Conference on Antennas and Propagation (EuCAP’10), 1-5, Barcelona, Spain, Apr. 2010, invited paper.