Vol. 47
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-04-09
Design of a Compact Patch Antenna Loading Periodic Jerusalem Crosses
By
Progress In Electromagnetics Research M, Vol. 47, 151-159, 2016
Abstract
A compact microstrip antenna loaded with periodic patterns etched in the ground plane is proposed. The etched patterns are Jerusalem crosses which look the same as one of the common electromagnetic band gap structures, uni-planar electromagnetic band gap. In this paper, the dielectric backed with etched ground plane is analysed in terms of metamaterial. The permittivity and permeability are derived from the simulated reflection and transmission coefficients. Then a patch is stacked on the metasubstrate, and the antenna is designed to operate at 2.4 GHz. The proposed antenna has a small dimension in comparison to two other published compact antennas. Compared to the conventional patch antenna, the proposed antenna achieves a 68.38% miniaturization of the patch, and a 2.84 times impedance bandwidth broadening. Furthermore, the operating frequency of the proposed antenna can be tuned over a large range of frequencies by physically adjusting the length of the surrounding slots or by voltage adjusting of the voltage controlled tunable inductive elements. The proposed antenna is fabricated and measured. The measurement results are found to agree well with the simulation ones.
Citation
Siya Mi, and Yee Hui Lee, "Design of a Compact Patch Antenna Loading Periodic Jerusalem Crosses," Progress In Electromagnetics Research M, Vol. 47, 151-159, 2016.
doi:10.2528/PIERM16022202
References

1. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

2. Li, H., B. Z. Wang, G. Zheng, and W. Shao, "A reflectarray antenna backed on FSS for low RCS and high radiation performances," Progress In Electromagnetics Research C, Vol. 15, 145-155, 2010.
doi:10.2528/PIERC10070303

3. Jia, Y., Y. Liu, H. Wang, K. Li, and S. Gong, "Low-RCS high-gain and wideband mushroom antenna," IEEE Antennas Wireless Propagation Letter, Vol. 14, 277-280, 2015.
doi:10.1109/LAWP.2014.2363071

4. Kim, S.-H., T. T. Nguyen, and J.-H. Jang, "Reflection characteristics of 1-D EBG ground plane and its application to a planar dipole antenna," Progress In Electronagnetics Research, Vol. 120, 51-66, 2011.
doi:10.2528/PIER11062909

5. Xu, H.-X., G.-H. Wang, and M.-Q. Qi, "A miniaturized triple-band metamaterial antenna with radiation pattern selectivity and polarization diversity," Progress In Electromagnetics Research, Vol. 137, 275-292, 2013.
doi:10.2528/PIER12081008

6. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. Crzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 15, 295-328, 2005.
doi:10.2528/PIER04070701

7. Rahimi, M., F. B. Zarrabi, R. Ahmadian, Z. Mansouri, and A. Keshtkar, "Miniaturization of antenna for wireless application with difference metamaterial structures," Progress In Electromagnetics Research, Vol. 145, 19-29, 2014.
doi:10.2528/PIER13120902

8. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antenna using a metamaterial-inspired technique," IEEE Transactions on Antenna and Propagation, Vol. 60, No. 5, 2175-2182, 2012.
doi:10.1109/TAP.2012.2189699

9. Saghanezhad, S. A. H. and Z. Atlasbaf, "Miniaturized dual-band CPW-fed antennas loaded with U-shaped metamaterials," IEEE Antennas Wireless Propagation Letter, Vol. 14, 658-661, 2015.
doi:10.1109/LAWP.2014.2376554

10. Yang, X. M., Q. H. Sun, Y. Jing, Q. Cheng, X. Y. Zhou, H. W. Kong, and T. J. Cui, "Increasing the bandwidth of microstrip patch antenna by loading compact artificial magneto-dielectrics," IEEE Transactions on Antenna and Propagation, Vol. 59, No. 2, 373-378, 2011.
doi:10.1109/TAP.2010.2096388

11. Wang, G. D., M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, "Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses," Chinese Physics B, Vol. 23, No. 1, 017802, 2013.
doi:10.1088/1674-1056/23/1/017802

12. Arezoomand, A. S., F. B. Zarrabi, S. Heydari, and N. P. Gandji, "Independent polarization and multi-band THz absorber base on Jerusalem cross," Optics Communications, Vol. 352, 121-126, 2015.
doi:10.1016/j.optcom.2015.05.003

13. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, No. 19, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

14. Hasar, U. C., J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, "Retrieval of effective electromagnetics parameters of isotropic metamaterials using reference-plane invariant expressions," Progress In Electromagnetics Research, Vol. 132, 425-441, 2012.
doi:10.2528/PIER12072412

15. Szab, Z., G. Park, R. Hedge, and E. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 10, 2646-2653, 2010.
doi:10.1109/TMTT.2010.2065310

16. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley and Sons, 1997.

17. Cai, T., G.-M. Wang, and J.-G. Liang, "Analysis and design of novel 2-d transmission line metamaterial and its application to compact dualband antenna," IEEE Antennas Wireless Propagation Letter, Vol. 13, 555-558, 2014.

18. Turpin, J. P., D. H., and D. E. Wolfe, "Design considerations for spatially reconfigurable metamaterials," IEEE Transactions on Antenna and Propagation, Vol. 63, No. 8, 3513-3520, 2015.
doi:10.1109/TAP.2015.2431718