Vol. 46

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-02-19

Compressive Sampling Multispectral Imaging and Unmixing Method for Fluorescent Imaging

By Yamin Song, Fuhong Cai, Julian Evans, Erik Forsberg, and Sailing He
Progress In Electromagnetics Research M, Vol. 46, 135-142, 2016
doi:10.2528/PIERM16011402

Abstract

Multispectral imaging is an important tool for understanding composite materials in many disciplines. Spectral unmixing enables the determination of individual fluorophore distributions. Due to the dispersive nature of biomaterials the observed spectra of fluorescent dyes is unknown. Spectral unmixing can be accomplished for unknown endmember spectra using minimum volume simplex analysis (MVSA). Compressive sampling (CS) is a method to reduce the computational cost of operating on sparse data sets and can be performed efficiently using NESTA based on Nesterov's algorithm. Here we demonstrate that NESTA and MVSA can be combined with a denoising threshold to create a compressive sampling and multispectral unmixing (CSMIU) method that enables efficient bioimaging and unmixing with high levels of accuracy (spectral angle distances (SADs) < 0.05). This CSMIU method may potentially enable broadband and in vivo bioimaging modalities.

Citation


Yamin Song, Fuhong Cai, Julian Evans, Erik Forsberg, and Sailing He, "Compressive Sampling Multispectral Imaging and Unmixing Method for Fluorescent Imaging," Progress In Electromagnetics Research M, Vol. 46, 135-142, 2016.
doi:10.2528/PIERM16011402
http://jpier.org/PIERM/pier.php?paper=16011402

References


    1. Jorgensen, K., et al., "Physical properties of orbital debris from spectroscopic observations," Advances in Space Research, Vol. 34, No. 5, 1021-1025, 2004.
    doi:10.1016/j.asr.2003.02.031

    2. Lin, R. P., et al., The Reuven Ramaty High-energy Solar Spectroscopic Imager (RHESSI), Springer Netherlands, Berlin, 2003.
    doi:10.1007/978-94-017-3452-3

    3. Pham, T. H., et al., "Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging," Applied Optics, Vol. 39, No. 34, 6487-6497, 2000.
    doi:10.1364/AO.39.006487

    4. Keshava, N. and J. F. Mustard, "Spectral unmixing," IEEE Signal Processing Magazine, Vol. 19, No. 1, 44-57, 2002.
    doi:10.1109/79.974727

    5. Zacharakis, G., et al., "Spectral unmixing of multi-color tissue specific in vivo fluorescence in mice," European Conference on Biomedical Optics. Optical Society of America, 6626-8, 2007.

    6. Xu, H. and B. W. Rice, "In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique," Journal of Biomedical Optics, Vol. 14, No. 6, 064011-064011-9, 2009.
    doi:10.1117/1.3258838

    7. Mansfield, J. R., et al., "Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging," Journal of Biomedical Optics, Vol. 10, No. 4, 041207-041207-9, 2005.
    doi:10.1117/1.2032458

    8. Duarte, M. F., et al., "Single-pixel imaging via compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 83, 2008.
    doi:10.1109/MSP.2007.914730

    9. Candè, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
    doi:10.1109/MSP.2007.914731

    10. Soldevila, F., et al., "Single-pixel polarimetric imaging spectrometer by compressive sensing," Applied Physics B, Vol. 113, No. 4, 551-558, 2013.
    doi:10.1007/s00340-013-5506-2

    11. Li, C., et al., "A compressive sensing and unmixing scheme for hyperspectral data processing," IEEE Transactions on Image Processing, Vol. 21, No. 3, 1200-1210, 2012.
    doi:10.1109/TIP.2011.2167626

    12. Shuai, T., et al., "Accuracy analysis of lunar mineral end members extraction using simulated Chang’ E-1 IIM data," Yaogan Xuebao - Journal of Remote Sensing, Vol. 16, No. 6, 1205-1221, 2012.

    13. Nascimento, J. M. P. and J. M. B. Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 4, 898-910, 2005.
    doi:10.1109/TGRS.2005.844293

    14. Becker, S., J. Bobin, and E. J. Candès, "NESTA: A fast and accurate first-order method for sparse recovery," SIAM Journal on Imaging Sciences, Vol. 4, No. 1, 1-39, 2011.
    doi:10.1137/090756855

    15. Zhan, Y., et al., "Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy," Angewandte Chemie International Edition, Vol. 52, No. 4, 1148-1151, 2013.
    doi:10.1002/anie.201207909

    16. Studer, V., et al., "Compressive fluorescence microscopy for biological and hyperspectral imaging," Proceedings of the National Academy of Sciences, Vol. 109, No. 26, E1679-E1687, 2012.
    doi:10.1073/pnas.1119511109