Vol. 45
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-12-21
Scattering of Light by the Metal-Coated Dielectric Nanocylinders with Angular Periodicity
By
Progress In Electromagnetics Research M, Vol. 45, 101-111, 2016
Abstract
Scattering of light by metal-coated dielectric nanocylinders periodically distributed along a cylindrical surface is investigated both theoretically and numerically. The structure is under the authors' interest because of its practical application in design and fabrication of plasmonic devices such as plasmonic ring resonators, Plasmonic Crystals and THz waveguides. The method is based on the T-matrix approach and the field expansion into the cylindrical Floquet modes. The method is rigorous, straightforward and can be easily applied to various cylindrical configurations with different types and locations of the excitation sources. Scattering cross section and absorption cross section of three and four silver (Ag) coated-dielectric nanocylinders periodically situated along a cylindrical surface are studied. Near field distributions are investigated at particular wavelengths corresponding to the resonance wavelengths in the spectral responses. Special attention is paid to the unique and interesting phenomena characterizing the cylindrical structure composed of the metalcoated nanocylinders such as: a) localization of the field at the outer and inner interfaces of the metal-coated nanocylinders; b) excitement of the field in the gap region between the nanocylinders through the coupled plasmon resonance and c) strong confinement of the field inside the cylindrical structure. Detailed investigations have shown that unique phenomena characterizing the cylindrical configurations of the nanocylinders can be realized using a relatively simple structure composed of three nanocylinders and there is no need to further increase a number of the scatterers (nanocylinders).
Citation
Vakhtang Jandieri, Kiyotoshi Yasumoto, Yunfei Liu, and Jaromir Pistora, "Scattering of Light by the Metal-Coated Dielectric Nanocylinders with Angular Periodicity," Progress In Electromagnetics Research M, Vol. 45, 101-111, 2016.
doi:10.2528/PIERM15100503
References

1. Zhang, J. and L. Zhang, "Nanostructures for surface plasmons," Advances in Optics and Photonics, Vol. 4, 157, 2012.
doi:10.1364/AOP.4.000157

2. Berini, P., "Long-range surface plasmon polaritons," Advances in Optics and Photonics, Vol. 1, 484, 2009.
doi:10.1364/AOP.1.000484

3. Hess, O., J. Pendry, S. Maier, R. Oulton, J. Hamm, and K. Tsakmakidis, "Active nanoplasmonic materials," Nature Materials, Vol. 11, 573, 2012.
doi:10.1038/nmat3356

4. Berini, P. and I. De Leon, "Surface plasmon-polariton amplifiers and lasers," Nature Photonics, Vol. 6, 16, 2012.
doi:10.1038/nphoton.2011.285

5. Kravets, V., F. Schedin, and A. Grigorenko, "Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles," Physical Review Letters, Vol. 101, 087403, 2008.
doi:10.1103/PhysRevLett.101.087403

6. Luk'yanchuk, B. and V. Ternovsky, "Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field," Physical Review B, Vol. 73, 235432, 2006.
doi:10.1103/PhysRevB.73.235432

7. Nguyen-Huu, N., M. Cada, and J. Pistora, "Imperfectly geometric shapes of nanograting structures as solar absorbers with superior performance for solar cells," Optics Express, Vol. 22, A282, 2014.
doi:10.1364/OE.22.00A282

8. Brongersma, M., Y. Cui, and S. Fan, "Light management for photovoltaics using high-index nanostructures," Nature Materials, Vol. 13, 451-460, 2014.
doi:10.1038/nmat3921

9. Velichko, E. and A. Nosich, "Refractive-index sensitivities of hybrid surface-plasmon resonances for a core-shell circular silver nanotube sensor," Optics Letters, Vol. 38, 4978, 2013.
doi:10.1364/OL.38.004978

10. Ruan, Z. and S. Fan, "Superscattering of light from subwavelength nanostructures," Physical Review Letters, Vol. 105, 013901, 2010.
doi:10.1103/PhysRevLett.105.013901

11. Mirzaei, A., I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, "Cloaking and enhanced scattering of core-shell plasmonic nanowires," Opt. Express, Vol. 21, 10454, 2013.
doi:10.1364/OE.21.010454

12. Okada, N. and J. Cole, "Cylindrical invisibility cloak based on photonic crystal layers that permits communication with the outside," J. Opt. Soc. Am. B, Vol. 29, 3344, 2012.
doi:10.1364/JOSAB.29.003344

13. Nguyen-Huu, N., M. Cada, J. Pistora, and K. Yasumoto, "Tunable optical filter based on gold and silver double-sided gratings and its application as plasmonic sensor," Journal of Lightwave Technology, Vol. 32, 3477, 2014.

14. Zhang, J., J. Ou, K. MacDonald, and N. Zheludev, "Optical response of plasmonic relief metasurfaces," Journal of Optics, Vol. 14, 114002, 2012.
doi:10.1088/2040-8978/14/11/114002

15. Natarov, D., R. Sauleau, and A Nosich, "Periodicity-enhanced plasmon resonances in the scattering of light by sparse finite gratings of circular silver nanowires," IEEE Photonics Technology Letters, Vol. 24, 43, 2012.

16. Liu, H., X. Sun, Y. Pei, F. Yao, and Y. Jiang, "Tunability and linewidth sharpening of plasmon resonances on a periodic gold nanowire array coupled to a thin textured silver film," Applied Physics B, Vol. 104, 665, 2011.
doi:10.1007/s00340-011-4538-8

17. D'Aguanno, G. and N. Mattiucci, "Dispersive and scattering properties of multilayer arrays made of plasmonic nanoparticles," J. Opt. Soc. Am. B, Vol. 31, 2524, 2014.
doi:10.1364/JOSAB.31.002524

18. Natarov, D., V. Byelobrov, R. Sauleau, T. Benson, and A. Nosich, "Periodicity-induced effects in the scattering and absorption of light by infinite and finite grating of circular silver nanowires," Optics Express, Vol. 19, 22, 22176, 2011.

19. Jandieri, V., P. Meng, K. Yasumoto, and Y. Liu, "Scattering of light by gratings of metal-coated circular nanocylinders on a dielectric substrate," Journal of the Optical Society of America A, Vol. 32, 1384, 2015.
doi:10.1364/JOSAA.32.001384

20. Jandieri, V., K. Yasumoto, and Y. Liu, "Directivity of radiation of a dipole source coupled to cylindrical electromagnetic bandgap structures," J. Opt. Soc. Am. B, Vol. 29, 2622, 2012.
doi:10.1364/JOSAB.29.002622

21. Bozhevolnyi, S., V. Volkov, E. Devaux, J. Laluet, and T. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature Letters, Vol. 440, 508, 2006.
doi:10.1038/nature04594

22. Talebi, N., A. Mahjoubfar, and M. Shahabadi, "Plasmonic ring resonator," J. Opt. Soc. Am. B, Vol. 25, No. 12, 2116, 2008.
doi:10.1364/JOSAB.25.002116

23. Atakaramians, S., S. Afshar V., T. M. Monro, and D. Abbott, "Terahertz dielectric waveguides," Advances in Optics and Photonics, Vol. 5, 169, 2013.
doi:10.1364/AOP.5.000169

24. Mitrofanov, O., R. James, F. Anibal Fernandez, T. K. Mavrogordatos, and J. Harrington, "Reducing transmission losses in hollow THz waveguides," IEEE Transactions on Terahertz Science and Technology, Vol. 1, No. 1, 124, 2011.
doi:10.1109/TTHZ.2011.2159547

25. Mitrofanov, O. and J. Harrington, "Dielectric-lined cylindrical metallic THz waveguides: Mode structure and dispersion," Optics Express, Vol. 18, No. 3, 1898, 2010.
doi:10.1364/OE.18.001898

26. Yasumoto, K., H. Toyama, and T. Kushta, "Accurate analysis of two-dimensional electromagnetic scattering from multilayered periodic arrays of circular cylinders using lattice sums technique," IEEE Transactions on Antennas and Propagation, Vol. 52, 2603, 2004.
doi:10.1109/TAP.2004.834440

27. Yasumoto, K., ed., Electromagnetic Theory and Applications for Photonic Crystals, CRC Press, Boca Raton, FL, 2005.
doi:10.1201/9781420026627

28. Jandieri, V. and K. Yasumoto, "Analysis of scattering from a finite array of circular cylinders using a model of layered cylindrical arrays," Optics Communications, Vol. 284, 4109, 2011.
doi:10.1016/j.optcom.2011.04.066

29. Jandieri, V. and K. Yasumoto, "Electromagnetic scattering by layered cylindrical arrays of circular rods," IEEE Transactions on Antennas and Propagation, Vol. 59, 2437, 2011.
doi:10.1109/TAP.2011.2143674

30. Meng, P., K. Yasumoto, and Y. Liu, "Surface plasmon resonant scattering in metal-coated dielectric nanocylinders," Optics Communications, Vol. 332, 18, 2014.
doi:10.1016/j.optcom.2014.06.052

31. Rahmani, M., D. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Liew, M. Hong, and S. Maier, "Subgroup decomposition of plasmonic resonances in hybrid oligomers: Modeling the resonance lineshape," Nano Letters, Vol. 12, 2101, 2012.
doi:10.1021/nl3003683

32. Laroche, T. and C. Girard, "Near-field optical properties of single plasmonic nanowires," Appl. Phys. Lett., Vol. 89, 233119, 2006.
doi:10.1063/1.2403914