Vol. 44
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-11-06
Circularly Polarized Wave Scattering from Two-Dimensional Dielectric Rough Sea Surface
By
Progress In Electromagnetics Research M, Vol. 44, 119-126, 2015
Abstract
Based on the polarimetric scattering model of second-order small-slope approximation (SSA-II) with tapered wave incidence under linear and circular polarization, monostatic and bistatic scattering from two-dimensional dielectric rough sea surface is investigated. The emphasis of the present study is put on the Brewster effect on polarization state of scattering wave under circularly polarized wave incidence. Numerical simulations show that for bistatic configuration under circularly polarized wave incidence, the polarization state of scattering wave strongly depends on incident angle, scattering angle, as well as the Brewster angle associated with medium permittivity.
Citation
Peng-Ju Yang, Li-Xin Guo, and Qiang Wang, "Circularly Polarized Wave Scattering from Two-Dimensional Dielectric Rough Sea Surface," Progress In Electromagnetics Research M, Vol. 44, 119-126, 2015.
doi:10.2528/PIERM15090702
References

1. Garrison, J. L., A. Komjathy, V. U. Zavorotny, and S. J. Katzberg, "Wind speed measurement using forward scattered GPS signals," IEEE Trans. Geosci. Remote Sensing, Vol. 40, No. 1, 50-65, 2002.
doi:10.1109/36.981349

2. Komjathy, A., V. U. Zavorotny, P. Axelrad, G. H. Born, and J. L. Garrison, "GPS signal scattering from sea surface: Wind speed retrieval using experimental data and theoretical model," Remote Sens. Environ., Vol. 73, No. 2, 162-174, 2000.
doi:10.1016/S0034-4257(00)00091-2

3. Rius, A., J. M. Aparicio, E. Cardellach, M. Martín-Neira, and B. Chapron, "Sea surface state measured using GPS reflected signals," Geophys. Res. Lett., Vol. 29, No. 23, 2122, 2002.
doi:10.1029/2002GL015524

4. Zavorotny, V. U. and A. G. Voronovich, "Scattering of GPS signals from the ocean with wind ," IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 2, 951-964, 2000.
doi:10.1109/36.841977

5. Thompson, D. R., T. M. Elfouhaily, and J. L. Garrison, "An improved geometrical optics model for bistatic GPS scattering from the ocean surface," IEEE Trans. Geosci. Remote Sensing, Vol. 43, No. 12, 2810-2821, 2005.
doi:10.1109/TGRS.2005.857895

6. Barzegar-Parizi, S. and A. A. Shishegar, "Electromagnetic wave scattering analysis from 2-D periodic rough surfaces using complex images technique," IEEE Trans. Geosci. Remote Sensing, Vol. 53, No. 2, 862-868, 2015.
doi:10.1109/TGRS.2014.2329995

7. Brennan, C., D. Trinh-Xuan, M. Mullen, P. Bradley, and M. Condon, "Improved forward backward method with spectral acceleration for scattering from randomly rough lossy surfaces," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3922-3926, 2013.
doi:10.1109/TAP.2013.2255091

8. Luo, H. J., G. D. Yang, Y. H. Wang, J. C. Shi, and Y. Du, "Numerical studies of sea surface scattering with the GMRES-RP method," IEEE Trans. Geosci. Remote Sensing, Vol. 52, No. 4, 2064-2073, 2014.
doi:10.1109/TGRS.2013.2257800

9. Miret, D., G. Soriano, and M. Saillard, "Rigorous simulations of microwave scattering from finite conductivity two-dimensional sea surfaces at low grazing angles," IEEE Trans. Geosci. Remote Sensing, Vol. 52, No. 6, 3150-3158, 2014.
doi:10.1109/TGRS.2013.2271384

10. Jia, C. G., L. X. Guo, and P. J. Yang, "EM scattering from a target above a 1-D randomly rough sea surface using GPU-based parallel FDTD," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 217-220, 2015.
doi:10.1109/LAWP.2014.2360415

11. Kuang, L. and Y. Q. Jin, "Bistatic scattering from a three-dimensional object over a randomly rough surface using the FDTD algorithm," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2302-2312, 2007.
doi:10.1109/TAP.2007.901846

12. Fung, A. K. and H. J. Eom, "Multiple scattering and depolarization by a randomly rough Kirchhoff Multiple scattering and depolarization by a randomly rough Kirchhoff surface," IEEE Trans. Antennas Propag., Vol. 29, No. 3, 463-471, 1981.
doi:10.1109/TAP.1981.1142613

13. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves: Advanced Topics, Vol. 3, Wiley-Interscience, New York, 2001.
doi:10.1002/0471224278

14. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive. Volume II: Radar Remote Sensing and Surface Scattering and Emission Theory, Vol. 2, Addison-Wesley, Massachusetts, 1982.

15. Johnson, J. T., "Third-order small-perturbation method for scattering from dielectric rough surfaces," J. Opt. Soc. Am. A, Vol. 16, No. 11, 2720-2736, 1999.
doi:10.1364/JOSAA.16.002720

16. Nieto-Vesperinas, M., "Depolarization of electromagnetic waves scattered from slightly rough random surfaces: A study by means of the extinction theorem," J. Opt. Soc. Am., Vol. 72, No. 5, 539-547, 1982.
doi:10.1364/JOSA.72.000539

17. Valenzuela, G. R., "Depolarization of EM waves by slightly rough surfaces," IEEE Trans. Antennas Propag., Vol. 15, No. 4, 552-557, 1967.
doi:10.1109/TAP.1967.1138962

18. Bass, F. G., I. M. Fuks, A. I. Kalmykov, I. E. Ostrovsky, and A. D. Rosenberg, "Very high frequency radiowave scattering by a disturbed sea surface. Part II: Scattering from an actual sea surface," IEEE Trans. Antennas Propag., Vol. 16, No. 5, 560-568, 1968.
doi:10.1109/TAP.1968.1139244

19. Fung, A. K. and H. L. Chan, "Backscattering of waves by composite rough surfaces," IEEE Trans. Antennas Propag., Vol. 17, No. 5, 590-597, 1969.
doi:10.1109/TAP.1969.1139483

20. Luo, H. and Y. Du, "Comparison of the two-scale and three-scale models for bistatic electromagnetic scattering from ocean surfaces," Progress In Electromagnetics Research, Vol. 138, 519-536, 2013.
doi:10.2528/PIER13022102

21. Plant, W. J., "A two-scale model of short wind-generated waves and scatterometry," J. Geophys. Res., Vol. 91, No. C9, 10735-10749, 1986.
doi:10.1029/JC091iC09p10735

22. Voronovich, A. G. and V. U. Zavorotny, "Full-polarization modeling of monostatic and bistatic radar scattering from a rough sea surface," IEEE Trans. Antennas Propag., Vol. 62, No. 3, 1362-1371, 2014.
doi:10.1109/TAP.2013.2295235

23. Zuffada, C., A. Fung, J. Parker, M. Okolicanyi, and E. Huang, "Polarization properties of the GPS signal scattered off a wind-driven ocean," IEEE Trans. Antennas Propag., Vol. 52, No. 1, 172-188, 2004.
doi:10.1109/TAP.2003.822438

24. Maradudin, A. A., R. E. Luna, and E. R. Méndez, "The Brewster effect for a one-dimensional random surface," Waves in Random Media, Vol. 3, No. 1, 51-60, 1993.
doi:10.1088/0959-7174/3/1/006

25. Voronovich, A. G., Wave Scattering from Rough Surfaces, 2nd Ed., Springer-Verlag, Berlin, 1999.
doi:10.1007/978-3-642-59936-1

26. Nie, D., M. Zhang, and N. Li, "Investigation on microwave polarimetric scattering from two-dimensional wind fetch- and water depth-limited nearshore sea surfaces," Progress In Electromagnetics Research, Vol. 145, 251-261, 2014.
doi:10.2528/PIER14022505

27. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves: Numerical Simulations, Vol. 2, Wiley-Interscience, New York, 2001.
doi:10.1002/0471224308

28. Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandemark, "A unified directional spectrum for long and short wind-driven waves," J. Geophys. Res., Vol. 102, No. C7, 15781-15796, 1997.
doi:10.1029/97JC00467

29. Greffet, J. J., "Theoretical model of the shift of the Brewster angle on a rough surface," Opt. Lett., Vol. 17, No. 4, 238-240, 1992.
doi:10.1364/OL.17.000238

30. Saillard, M. and D. Maystre, "Scattering from metallic and dielectric rough surfaces," J. Opt. Soc. Am. A, Vol. 7, No. 6, 982-990, 1990.
doi:10.1364/JOSAA.7.000982