Vol. 44
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-12-08
Radiated Near-Field Emission Extraction on 3D Curvilinear Surfaces from 2D Data
By
Progress In Electromagnetics Research M, Vol. 44, 191-201, 2015
Abstract
This paper deals with a fast and simple computational method of 3D near-field (NF) radiation from 2D planar frequency- and time-dependent data. The established calculation method can be used to predict the electromagnetic (EM) emission from various types of electronic devices. The proposed method is originally applicable to the computation of the EM NF along the arbitrary shaped curvilinear 3D surface of multi-shape objects. The EM computation consists in the application of the planar NF-to-NF transform using plane wave spectrum. The relevance of the established method is verified with three different validation tests of analytical and practical demonstrations. The first validation is based on the analytical NF radiation from set of elementary dipoles excited by a harmonic signal. The second validation test is based on the experimented data from a hybrid active printed circuit boards (PCBs) in the frequency domain. The last validation test is performed with the measured NF data from a microstrip planar circuit in the time-domain. For all the different test cases, the plots of EM NF on arbitrary curvilinear surfaces are presented. Applications with 3D visualization or holographic surface with arbitrary geometry of EM radiation from planar data in both frequency- and time-domains confirm the effectiveness of the proposed method to predict the EM NF emission from complex PCBs. The developed 2D-to-3D computational method is particularly useful for radiated EM compatibility engineering.
Citation
Blaise Ravelo, "Radiated Near-Field Emission Extraction on 3D Curvilinear Surfaces from 2D Data," Progress In Electromagnetics Research M, Vol. 44, 191-201, 2015.
doi:10.2528/PIERM15061205
References

1. Lertsirimit, C., D. R. Jackson, and D. R. Wilton, "Time domain coupling to a device on a printed circuit board inside a cavity," Radio Science, Vol. 40, No. 6, 1-12, RS6S14, Dec. 2005.

2. Archambeault, R., C. Brench, and S. Connor, "Review of printed-circuit-board level EMI/EMC issues and Ttools," IEEE Trans. EMC, Vol. 52, No. 2, 455-461, 2010.

3. Barrière, P. A., J. J. Laurin, and Y. Goussard, "Mapping of equivalent currents on high-speed digital printed circuit boards based on near-field measurements," IEEE Tran. EMC, Vol. 51, No. 3, 649-658, Aug. 2009.

4. Klinkenbusch, L., "Time domain near-field to near-field transformation using a spherical multipole approach," Radio Science, Vol. 46, No. 5, 1-8, RS0E17, Oct. 2011.

5. Weng, H., D. G. Beetner, and R. E. DuBroff, "Prediction of radiated emissions using near-field measurements," IEEE Trans. EMC, Vol. 53, No. 4, 891-899, Nov. 2011.

6. Hansen, T. B. and A. D. Yaghjian, "Planar near-field scanning in the time domain, Part 2: Sampling theorems and computation schemes," IEEE Trans. Antennas Propagat., Vol. 42, No. 9, 1280-1291, 1994.
doi:10.1109/8.318649

7. Serhir, M., P. Besnier, and M. Drissi, "An accurate equivalent behavioural model of antenna radiation using a mode-matching technique based on spherical near field measurements," IEEE Trans. on Ant. Prop., Vol. 56, No. 1, 48-57, Jan. 2008.
doi:10.1109/TAP.2007.913080

8. Las-Heras, F. and T. K. Sarkar, "A direct optimization approach for source reconstruction and NF-FF transformation using amplitude-only data," IEEE Trans. Ant. Prop., Vol. 50, No. 4, 500-510, Apr. 2002.
doi:10.1109/TAP.2002.1003386

9. Serhir, M., J.M. Geffrin, A. Litman, and P. Besnier, "Aperture antenna modeling by a finite number of elemental dipoles from spherical field measurements," IEEE Trans. on Ant. Prop., Vol. 58, No. 4, 1260-1268, Apr. 2010.
doi:10.1109/TAP.2010.2041157

10. "Information technology equipment, radiated emission tests,", International Standard IEC/EN55022, 2007.
doi:10.1109/TAP.2010.2041157

11. "Electromagnetic compatibility (EMC) radiated immunity tests - Part 4-3: Testing and measurement techniques - Radiated, radio-frequency, electromagnetic field immunity test,", Internation Standard IEC/EN 61000-4-3, 2007.
doi:10.1109/TAP.2010.2041157

12. Capozzoli, A., C. Curcio, and A. Liseno, "Experimental field reconstruction of incoherent sources," Progress In Electromagnetics Research B, Vol. 47, 219-239, 2013.
doi:10.2528/PIERB12072505

13. Laurin, J.-J., Z. Ouardhiri, and J. Colinas, "Near-field imaging of radiated emission sources on printed-circuit boards," 2001 IEEE Int. Symp. on Electromagnetic Compatibility (EMC) Digest, Vol. 1, 368-373, Montréal, QC, Aug. 13-17, 2001.

14. Deschrijver, D., F. Vanhee, D. Pissoort, and T. Dhaene, "Automated near-field scanning algorithm for the EMC analysis of electronic devices," IEEE Trans. EMC, Vol. 54, No. 3, 502-510, Jun. 2012.

15. Liu, Y., B. Ravelo, and P. Fernandez-Lopez, "Modeling of magnetic near-field radiated by electronic devices disturbed by complex transient signals," Applied Physics Research (APR), Vol. 4, No. 1, 3-18, Feb. 2012.

16. Baudry, D., C. Arcambal, A. Louis, B. Mazari, and P. Eudeline, "Applications of the near-field techniques in EMC investigations," IEEE Trans. Electromagnetic Compatibility, Vol. 49, No. 3, 485-493, Aug. 2007.
doi:10.1109/TEMC.2007.902194

17. Tong, X., D. W. P. Thomas, A. Nothofer, P. Sewell, and C. Christopoulos, "Modelling electromagnetic emissions from printed circuit boards in closed environments using equivalent dipoles," IEEE Trans. Electromagn. Compat., Vol. 52, No. 2, 462-470, 2010.
doi:10.1109/TEMC.2010.2044181

18. "CST Studio Suite,", (2013 CST Computer Simulation Technology AG.), http://www.cst.com/Content/Products/CST S2/Overview.aspx, Accessed 2014.
doi:10.1109/TEMC.2010.2044181

19. "EMPro 3D EM Simulation Software,", (Agilent Technologies), http://www.home.agilent.com/en/pc-1297143/empro-3d-em-simulation-software, Accessed 2013.
doi:10.1109/TEMC.2010.2044181

20. "Electromagnetics, Circuit & Systems Solutions,", (ANSYS Inc.), http://www.ansys.com/Products/Simulation+Technology/Electromagnetics, Accessed 2013.
doi:10.1109/TEMC.2010.2044181

21. "EMC Studio,", (EMCoS Ltd.), http://www.emcos.com/EMC, Accessed 2014.
doi:10.1109/TEMC.2010.2044181

22. "Advanced EMC Solutions - FEKO Applications - EMC Analysis,", (Advanced EMC Solutions, Inc.), https://www.feko.info/product-detail/overview-of-feko, Accessed 2013.
doi:10.1109/TEMC.2010.2044181

23. Barrière, P. A., J. J. Laurin, and Y. Goussard, "Mapping of equivalent currents on high-speed digital printed circuit boards based on near-field measurements," IEEE Trans. Electromagnetic Compatibility, Vol. 51, No. 3, 649-658, Aug. 2009.
doi:10.1109/TEMC.2009.2020297

24. Aunchaleevarapan, K., K. Paithoonwatanakij, W. Khan-ngern, and S. Nitta, "Novel method for predicting PCB configurations for near-field and far-field radiated EMI using a neural network," IEICE Trans. Commun., Vol. E86-B, No. 4, 1364-1376, Apr. 2003.

25. Reinhold, C., C. Hangmann, T. Mager, C. Hedayat, and U. Hilleringmann, "Plane wave spectrum expansion from near-field measurements on no-planar lattices," Proc. 5th Int. Conf. on electromagnetic Near-field Characterization and Imaging (ICONIC) 2011, 1-4, Rouen, France, Nov. 30-Dec. 2, 2011.

26. Ravelo, B., Y. Liu, and J. Ben Hadj Slama, "Time-domain planar near-field/near-field transform with PWS operations," Eur. Phys. J. Appl. Phys., Vol. 53, No. 1 (30701), 1-8, 2011.

27. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Wiley, New York, 2005.