Vol. 42

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-06-24

Selective-Band Metaparticle Based on Bright-Bright Mode Coupling for Obscuration Applications

By Sharhabeel Alyones, Al. V. Jelinek, Michael Granado, and Charles W. Bruce
Progress In Electromagnetics Research M, Vol. 42, 159-167, 2015
doi:10.2528/PIERM15052802

Abstract

In this paper, we propose a planar metamaterial particle that consists of two bright elements imprinted on a dielectric substrate in the microwave region. The two bright elements are a circular ring resonator (CRR) and an asymmetric single-split rectangular resonator (ASRR). The structure exhibits a narrow transparency band in a wide absorption/reflection band through coupling between the two bright modes. We study the proposed structure through numerical simulation and experiment. We also test different orientations of the structure for possible application as an efficient frequency selective-band obscurant.

Citation


Sharhabeel Alyones, Al. V. Jelinek, Michael Granado, and Charles W. Bruce, "Selective-Band Metaparticle Based on Bright-Bright Mode Coupling for Obscuration Applications," Progress In Electromagnetics Research M, Vol. 42, 159-167, 2015.
doi:10.2528/PIERM15052802
http://jpier.org/PIERM/pier.php?paper=15052802

References


    1. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, 1998.
    doi:10.1002/9783527618156

    2. Alyones, S., C. W. Bruce, and A. K. Buin, "Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire," IEEE Trans. Antennas Propag., Vol. 55, 1856-1861, 2007.
    doi:10.1109/TAP.2007.898579

    3. Waterman, P. C., "Scattering, absorption and extinction by thin fibers," J. opt. Soc. Amer., Vol. 22, No. 11, 2430-2441, 2005.
    doi:10.1364/JOSAA.22.002430

    4. Alyones, S. and C. W. Bruce, "Electromagnetic scattering by finite conducting fiber: Limitation of a previous published code," Journal of Electromagnetic Waves And Applications, Vol. 25, No. 7, 1021-1030, 2011.
    doi:10.1163/156939311795253948

    5. Bruce, C. W. and S. Alyones, "Extinction efficiencies for metallic fibers in the infrared," Applied Optics, Vol. 48, 5095-5098, 2009.
    doi:10.1364/AO.48.005095

    6. Bruce, C. W. and S. Alyones, "Visible and infrared optical properties of stacked cone graphitic microtubes," Applied Optics, Vol. 51, No. 16, 3250, 2012.
    doi:10.1364/AO.51.003250

    7. Bruce, C. W., A. V. Jelinek, S. Wu, S. Alyones, and Q. S. Wang, "Millimeter-wavelength investigation of fibrous aerosol absorption and scattering properties," Applied Optics, Vol. 43, 6648-6655, 2004.
    doi:10.1364/AO.43.006648

    8. Willis, T. M. and H. Weil, "Disc scattering and absorption by an improved computational method," Applied Optics, Vol. 26, No. 18, 1987.
    doi:10.1364/AO.26.003987

    9. Shepherd, J. W. and A. R. Holt, "The scattering of electromagnetic radiation from finite dielectric circular cylinders," J. Phys. A, Vol. 16, 65, 1983.

    10. Alyones, S., "Electromagnetically induced absorption in metamaterials in the infrared frequency," Progress In Electromagnetics Research Letters, Vol. 47, 19-25, 2014.
    doi:10.2528/PIERL14050501

    11. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, No. 4, 1103-1107, 2010.
    doi:10.1021/nl902621d

    12. Arif, E. Ç., A. Artar, M. Turkmen, A. A. Yanik, and H. Altug, "Plasmon induced transparency in cascaded π-shaped metamaterials," Optics Express, Vol. 19, No. 23, 22607-22618, 2011.
    doi:10.1364/OE.19.022607

    13. Li, Z., Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, "Manipulating the plasmon-induced transparency in terahertz metamaterials," Optics Express, Vol. 19, No. 9, 8912-8919, 2011.
    doi:10.1364/OE.19.008912

    14. Lu, Y., J. Y. Rhee, W. H. Jang, and Y. P. Lee, "Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance," Optics Express, Vol. 18, No. 20, 20912-20917, 2010.
    doi:10.1364/OE.18.020912

    15. Xu, H., Y. Lu, Y. P. Lee, and B. S. Ham, "Studies of electromagnetically induced transparency in metamaterials," Optics Express, Vol. 18, No. 17, 17736-17747, 2010.
    doi:10.1364/OE.18.017736

    16. Dong, Z.-G., H. Liu, M.-X. Xu, T. Li, S.-M.Wang, S.-N. Zhu, and X. Zhang, "Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars," Optics Express, Vol. 18, No. 17, 18229-18234, 2010.
    doi:10.1364/OE.18.018229

    17. Zhang, J., S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, "Electromagnetically induced transparency in metamaterials at near-infrared frequency," Optics Express, Vol. 18, No. 16, 17187-17192, 2010.
    doi:10.1364/OE.18.017187

    18. Liu, C., Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature, Vol. 409, No. 6819, 490-493, 2001.
    doi:10.1038/35054017

    19. Phillips, D. F., A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of light in atomic vapor," Phys. Rev. Lett., Vol. 86, No. 5, 783-786, 2001.
    doi:10.1103/PhysRevLett.86.783

    20. Anker, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonic nanosensors," Nat. Mater., Vol. 7, No. 6, 442-453, 2008.
    doi:10.1038/nmat2162

    21. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, No. 4, 1103-1107, 2010.
    doi:10.1021/nl902621d

    22. Jin, X.-R., J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K.W. Kim, H. S. Cheong, and W. H. Jang, "Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling," Optics Express, Vol. 19, No. 22, 21652-21657, 2011.
    doi:10.1364/OE.19.021652

    23. Wang, J., B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, "A novel planar metamaterial design for electromagnetically induced transparency and slow light," Optics Express, Vol. 21, No. 21, 25159-25166, 2013.
    doi:10.1364/OE.21.025159

    24. Ibraheem, A. I. A.-N., C. Jansen, and M. Koch, "High Q-factor metasurfaces based on miniaturized asymmetric single split resonators," Appl. Phys. Lett., Vol. 94, 153505, 2009.

    25. Alyones, S., A. V. Jelinek, M. Granado, and C. W. Bruce, "Design of metaparticles as sharp frequency-selective obscurant aerosols," Progress In Electromagnetics Research M, Vol. 30, 141-152, 2013.
    doi:10.2528/PIERM13020706

    26. CST Microwave Studio, Sonnet Software Inc., http://www.CST.com.