Vol. 43
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-08-09
Jrdf Algorithm for Joint Range-DOA-Frequency Estimation of Mixed Near-Field and Far-Field Sources
By
Progress In Electromagnetics Research M, Vol. 43, 39-50, 2015
Abstract
This paper presents an effective joint range-DOA-frequency (JRDF) estimation method based on fourth-order cumulants for multiple mixed near-field sources and far-field sources impinging on a symmetric uniform linear array, named as JRDF algorithm. Making use of the proposed method, range-DOA-frequency can be effectively estimated by the same eigen-pair of a defined ``information matrix'' constructed by two fourth-order cumulant matrices. Compared with the related works, the proposed method can provide superior performance, such as higher estimation accuracy, without the procedure of parameter search or parameter matching. Simulation results are presented to demonstrate the efficacy of the proposed approach.
Citation
Fulai Liu, Jian Ma, and Ruiyan Du, "Jrdf Algorithm for Joint Range-DOA-Frequency Estimation of Mixed Near-Field and Far-Field Sources," Progress In Electromagnetics Research M, Vol. 43, 39-50, 2015.
doi:10.2528/PIERM15051801
References

1. Krim, H. and M. Viberg, "Two decades of array signal processing research: The parametric approach," IEEE Transactions on Signal Processing Magazine, Vol. 13, No. 4, 67-94, 1996.
doi:10.1109/79.526899

2. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, 1986.
doi:10.1109/TAP.1986.1143830

3. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 7, 984-995, 1989.
doi:10.1109/29.32276

4. Gao, F. and A. B. Gershman, "A generalized ESPRIT approach to direction-of-arrival estimation," IEEE Signal Processing Letters, Vol. 12, No. 3, 254-257, 2005.
doi:10.1109/LSP.2004.842276

5. Liu, F. L., J. K. Wang, and C. Y. Sun, "Spatial differencing method for DOA estimation under the coexistence of both uncorrelated and coherent signals," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 2052-2062, 2012.
doi:10.1109/TAP.2012.2186216

6. Huang, Y. D. and M. Barkat, "Near-field multiple source localization by passive sensor array," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 7, 968-975, 1991.
doi:10.1109/8.86917

7. Chen, J. F. and X. L. Zhu, "A new algorithm for joint range-DOA-frequency estimation of near-field sources," EURASIP Journal on Applied Signal Processing, 386-392, 2004.
doi:10.1155/S1110865704310152

8. Zhi, W. and M. Y. M. Chia, "Near-field source localization via symmetric subarrays," IEEE Signal Processing Letters, Vol. 14, No. 6, 409-412, 2007.
doi:10.1109/LSP.2006.888390

9. Liang, J., X. Zeng, and B. Ji, "A computationally efficient algorithm for joint range-DOA estimation of near-field sources," Digital Signal Processing, Vol. 19, No. 4, 596-611, 2009.
doi:10.1016/j.dsp.2008.06.006

10. Liang, J. and D. Liu, "Passive localization of mixed near-field and far-field sources using two-stage MUSIC algorithm," IEEE Transactions on Signal Processing, Vol. 58, No. 1, 108-120, 2010.
doi:10.1109/TSP.2009.2029723

11. He, J., M. N. S. Swamy, and M. O. Ahmad, "Efficient application of MUSIC algorithm under the coexistence of far-field and near-field sources," IEEE Transactions on Signal Processing, Vol. 60, No. 4, 2066-2070, 2012.
doi:10.1109/TSP.2011.2180902

12. Jiang, J. J., F. J. Duan, and J. Chen, "Mixed near-field and far-field sources localization using the uniform linear sensor array," IEEE Sensors Journal, Vol. 19, No. 8, 487-490, 2012.

13. Liu, G. H. and X. Y. Sun, "Two-stage matrix differencing algorithm for mixed far-field and near-field sources classification and localization," IEEE Sensors Journal, Vol. 14, No. 6, 1957-1965, 2014.
doi:10.1109/JSEN.2014.2307060

14. Du, R., F. Liu, and J. Wang, "Space-time matrix method for mixed near-field and far-field sources localization," Progress In Electromagnetics Research M, Vol. 36, 131-137, 2014.
doi:10.2528/PIERM14040203

15. Wang, B., J. Liu, and X. Y. Sun, "Mixed sources localization based on sparse signal reconstruction," IEEE Signal Processing Letters, Vol. 19, No. 8, 487-490, 2012.
doi:10.1109/LSP.2012.2204248

16. Wang, B., Y. P. Zhao, and J. J. Liu, "Mixed-order MUSIC algorithm for localization of far-field and near-field sources," IEEE Signal Processing Letters, Vol. 20, No. 4, 311-314, 2013.
doi:10.1109/LSP.2013.2245503

17. Jiang, J.-J., F.-J. Duan, and J. Che, "Three-dimensional localization algorithm for mixed near-field and far-field sources based on ESPRIT and MUSIC method," Progress In Electromagnetics Research,, Vol. 136, 435-456, 2013.
doi:10.2528/PIER12121208

18. Swindlehurst, A. L. and T. Kailath, "Passive direction-of-arrival and range estimation for near-field sources," IEEE Fourth Annual ASSP Workshop on Spectrum Estimation and Modeling, 123-128, Minneapolis, MN, 1988.

19. Wax, M. and T. Kailath, "Detection of signals by information theoretic criteria," IEEE Transaction on Acoustic, Speech, and Signal Processing, Vol. 33, No. 2, 387-392, 1985.
doi:10.1109/TASSP.1985.1164557

20. Chen, Q., Y. B. Hua, and P. Stoica, "Asymptotic performance of optimal gain-and-phase estimators of sensor arrays," IEEE Transactions on Signal Processing, Vol. 48, No. 12, 3587-3590, 2000.
doi:10.1109/78.887058

21. Wijnholds, S. J. and A. J. Veen, "Multisource self-calibration for sensor arrays," IEEE Transactions on Signal Processing, Vol. 57, No. 9, 3512-3522, 2009.
doi:10.1109/TSP.2009.2022894

22. Wu, H. T., J. F. Yang, and F. K. Chen, "Source number estimators using transformed Gerschgorin radii," IEEE Transactions on Signal Processing, Vol. 43, No. 6, 1325-1333, 1995.
doi:10.1109/78.388844

23. Kay, S. M., Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-Hall, New Jersey, 1993.