Vol. 40
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-01-13
Electromagnetic Modeling of Coupled Carbon Nanotube Dipole Antennas Based on Integral Equations System
By
Progress In Electromagnetics Research M, Vol. 40, 179-183, 2014
Abstract
Fundamental properties of carbon nanotube antenna are firstly investigated to predict the antenna bundle response. The carbon nanotube effects are mathematically introduced via a quantum mechanical conductivity. This paper presents a new formulation based on integral equations system to study the coupled carbon nanotube antennas. The proposed integral equations system is numerically solved by the moments method. Each dipole antenna is excited at its center by a gap voltage source. The aim of the developed method is to investigate the antennas interaction effects for any coupling distance. The obtained input impedances, the current distributions and the antenna radiation patterns are in agreement with those obtained by the effective conductivity method or by the array factor method, according to the coupling distances.
Citation
Mourad Aidi, and Taoufik Aguili, "Electromagnetic Modeling of Coupled Carbon Nanotube Dipole Antennas Based on Integral Equations System," Progress In Electromagnetics Research M, Vol. 40, 179-183, 2014.
doi:10.2528/PIERM14111404
References

1. Iijima, I., "Helical microtubules of graphitic carbon," Nature, Vol. 354, 56-58, 1991.
doi:10.1038/354056a0

2. Saito, R., G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, UK, 2003.

3. Charlier, J.-C., X. Blase, and S. Roche, "Electronic and transport properties of nanotubes," Reviews of Modern Physics, Vol. 79, 677, Apr.-Jun. 2007.
doi:10.1103/RevModPhys.79.677

4. Burke, P. J., "An RF circuit model for carbon nanotubes," IEEE Trans. Nanotechnol., Vol. 2, No. 1, 55-58, Mar. 2003.
doi:10.1109/TNANO.2003.808503

5. Burke, P. J., S. Li, and Z. Yu, "Quantitative theory of nanowire and nanotubes antenna performance," IEEE Trans. Nanotechnol., Vol. 5, No. 4, 314-334, Jul. 2006.
doi:10.1109/TNANO.2006.877430

6. Hanson, G. W., "Fundamental transmitting properties of carbon nanotubes antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3426-3435, Washington, DC, Jul. 2-3, 2005.
doi:10.1109/TAP.2005.858865

7. Plombon, , J. J., K. P. O’Brien, F. Gstrein, and V. M. Dubin, "High-frequency electrical properties of individual and bundled carbon nanotubes," Applied Physics Letters, Vol. 90, 063106, 2007.
doi:10.1063/1.2437724

8. Attiya, A. M., "Lower frequency limit of carbon nanotube antenna," Progress In Electromagnetics Research, Vol. 94, 419-433, 2009.
doi:10.2528/PIER09062001

9. Huang, Y., W.-Y. Yin, and Q. H. Liu, "Performance prediction of carbon nanotube bundle dipole antennas," IEEE Trans. Nanotechnol., Vol. 7, No. 3, 331-337, May 2008.
doi:10.1109/TNANO.2007.915017

10. Lan, Y., B. Zeng, H. Zhang, B. Chen, and Z. Yang, "Simulation of carbon nanotube THz antenna arrays," International Journal of Infrared and Millimeter Waves, Vol. 27, No. 6, 871-877, Jun. 2006.
doi:10.1007/s10762-006-9123-6

11. Wang, Y., Q. Wu, W. Shi, X. He, X. Sun, and T. Gui, "Radiation properties of carbon nanotubes antenna at terahertz/infrared range," International Journal of Infrared and Millimeter Waves, Vol. 29, No. 1, 35-42, 2008.
doi:10.1007/s10762-007-9306-9

12. Ren, L., Q. Zhang, S. Nanot, I. Kawayama, M. Tonouchi, and J. Kono, "Terahertz dynamics of quantum-confined electrons in carbon nanomaterials," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 33, 846-860, 2012.
doi:10.1007/s10762-012-9916-8

13. Nefedov, I. S., "Effects of electromagnetic interaction in periodic arrays of single-wall metallic carbon nanotubes," Materials Physics and Mechanics, Vol. 13, 1-8, 2012.

14. Aidi, M. and T. Aguili, "Performance prediction of coupled carbon nanotubes dipole antennas," IEEE Conference on Electromagnetic Field Computation CEFC, May 2014.

15. Schelkunoff, S. A. and H. T. Friis, Antennas Theory and Practice, Wiley, New York, 1952.

16. Kelley, D. F. and W. L. Stutzman, "Array antenna pattern modeling methods that include mutual coupling effects," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 12, 1625-1632, Dec. 1993.
doi:10.1109/8.273305

17. Orfanidis, S. J., Electromagnetic Waves and Antennas, The MathWorks, Inc., ISBN: 0130938556.

18. Omri, D., M. Aidi, and T. Aguili, "Transient response of coupled wire antennas using the electric field integral equation with Laguerre polynomials as temporal basis functions," IEEE International Conference on Ultra-Wideband, 245-250, Paris, Sep. 2014.

19. D’Amore, M., M. S. Sarto, and A. G. D’Aloia, "Skin-effect modeling of carbon nanotube bundles: The high-frequency effective impedance," 2010 IEEE International Symposium on Electromagnetic Compatibility (EMC), 847-852, 2010, ISSN: 978-1-4244-6305-3.
doi:10.1109/ISEMC.2010.5711390

20. Kadhom, M. J., J. S. Aziz, and R. S. Fyath, "Performance prediction of carbon nano tube dipole antenna using the complex permittivity approach," Journal of Emerging Trends in Computing and Information Sciences, Vol. 3, No. 12, 1586-1605, Dec. 2012.

21. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Edition, Wiley, 2005, ISBN: 0-471-66782-X.

22. Duroc, Y., "Ultra-wideband antenna arrays: Systems with transfer function and impulse response," Progress In Electromagnetics Research M, Vol. 34, 117-123, 2014.
doi:10.2528/PIERM13121903

23. Haupt, R. L., Antenna Arrays: A Computational Approach, Wiley, 2010, ISBN: 978-0-470-40775-2.
doi:10.1002/9780470937464