Vol. 39
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-12-03
Rayleigh Fading Channel Characterization Using k -Band FMCW Radar in Reverberation Chamber
By
Progress In Electromagnetics Research M, Vol. 39, 193-201, 2014
Abstract
This paper investigates the channel characterization of Rayleigh fading channel using K-band frequency-modulated continuous wave (FMCW) radar system. An IF (intermediate frequency) signal of K-band FMCW radar can be treated as time and frequency domain signals due to a unique property of linear frequency modulation (LFM). First, channel sounder FMCW radar stability has been confirmed by measuring power flatness of transmitted radio frequency signal and estimated range in anechoic chamber before conducting the experiment for channel characterization of Rayleigh fading channel. Next, the measurement setup has been conducted in reverberation chamber which emulates multipath fading phenomena. In reverberation chamber, four different cases have been examined by changing the boundary conditions inside it with and without flat microwave absorbers. This investigation leads to obtained scattered plots, normalized propagation delay profiles (PDPs), mean excess delay, root-mean-square (RMS) delay spread and envelope distribution of Rayleigh fading channel at about 24.591 GHz.
Citation
Yun-Seok Noh, Rao Shahid Aziz, Myunghun Jeong, Dae-Hwan Jeong, Ashwini Kumar Arya, and Seong-Ook Park, "Rayleigh Fading Channel Characterization Using k -Band FMCW Radar in Reverberation Chamber," Progress In Electromagnetics Research M, Vol. 39, 193-201, 2014.
doi:10.2528/PIERM14102803
References

1. IEEE Standard Letter Designations for Radar-Frequency Bands, IEEE Std 521-2002 (Revision of IEEE Std 521-1984), , 0-1, 3, 2003.

2. Leonid, A. B., M. S. Sergey, and N. K. Victor, Handbook of RF, Microwave, and Millimeter-wave Components, Artech House, 2012.

3. Klotz, M. and H. Rohling, "24 GHz radar sensors for automotive applications," 13th International Conference on Microwaves, Radar and Wireless Communications, Vol. 1, 359-362, 2000.
doi:10.1007/s00703-011-0142-z

4. Kneifel, S., M. Maahn, G. Peters, and C. Simmer, "Observation of snowfall with a low-powe FMCW K-band radar (Micro Rain Radar)," Meteorology and Atmospheric Physics, Vol. 113, No. 1-2, 75-87, 2011.
doi:10.1109/IRS.2014.6869237

5. Kaminski, P., K. Staszek, K. Wincza, and S. Gruszczynski, "K-band FMCW radar module with interferometic capability for industrial applications," 15th International Radar Symposium (IRS), 1-4, Jun. 2014.

6. Im, Y. T., M. Ali, and S. O. Park, "Slow modulation behavior of the FMCW radar for wireless channel sounding technology," IEEE Transactions on Electromagnetic Compatibility, Vol. 99, 1-9, 2014.

7. Chen, X., P.-S. Kildal, and S.-H. Lai, "Estimation of average Rician K factor and average mode bandwidth in loaded reverberation chamber," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1437-2011, Nov. 21, 2011.
doi:10.1109/TEMC.2012.2188896

8. Holloway, C. L., H. A. Shah, R. J. Pirkl, K. A. Remley, D. A. Hill, and J. Ladbury, "Early time behavior in reverberation chambers and its effect on the relationships between coherence bandwidth, chamber decay time, RMS delay spread, and the chamber buildup time," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 4, 714-725, Aug. 2012.
doi:10.1109/TAP.2006.883987

9. Holoway, C. L., D. A. Hill, J. M. Ladbury, P. F. Wilson, G. Koepke, and J. Coder, "On the use of reverberation chambers to simulate a Rician radio environment for the testing of wireless devices," IEEE Trans. Antennas Propag., Vol. 54, No. 11, 3167-3177, Nov. 2006.

10. PNA Millimeter-Wave Network Analyzers: Analysis of Cable Length on VNA System Performance, Agilent Technologies, Santa Clara, CA, USA, 2004.

11. Rappaport, T. S., Wireless Communications: Principles and Practice, Chapter 4, Prentice-Hall, Englewood Cliffs, NJ, USA, 1999.
doi:10.1109/TAP.1972.1140277

12. Cox, D. C., "Delay Doppler characteristics of multipath propagation at 910 MHz in a suburban mobile radio environment," IEEE Trans. Antennas Propag., Vol. 20, No. 5, 625-635, Sep. 1972.

13. Feeney, S. M., "Wide-band channel sounding in the bands above 2GHz,", Doctoral Dissertation, Centre Commun. Syst., School Eng., Univ. Durham, Durham, U.K., 2007.

14. Salous, S., S. Feeney, N. Razvi-Ghods, and M. Abdalla, "Sounders for MIMO channel measurements," European Signal Processing Conference, Florence, Italy, Sep. 4, 2006.

15. Salous, S., P. Filippidis, R. Lewenz, I. Hawkins, N. Razavi-Ghods, and M. Abdallah, "Parallel receiver channel sounder for spatial and MIMO characterization of the mobile radio channel," IEE Proc. Commun., Vol. 6, No. 152, 912-918, Dec. 9, 2005.
doi:10.1049/ip-com:20020248

16. Salous, S. and H. Gokalp, "Dual-frequency sounder for UMTS frequency division duplex channels," IEE Proc. Commun., Vol. 149, No. 2, 117-122, Apr. 2002.

17. Feeney, S. M. and S. Salous, "Implementation of a channel sounder for the 60GHz band," Proc. URSI XXIX Gen. Assem., Chicago, 2008.