Vol. 38
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-09-05
Mono-Static Scattering from Array Antennas with Arbitrary Loadings
By
Progress In Electromagnetics Research M, Vol. 38, 133-141, 2014
Abstract
Scattering from array antennas is a complicated problem, containing the structural and mode items in nature. The complexities in analyzing the latter one also come from the feeding network that follows antenna unit ports, where active or anisotropy devices may exist. Therefore, it is significant that an efficient method can be constructed to analyze array antenna scattering with arbitrary port reflections. In this work, we address this problem by adopting the S-matrix model for the antenna array, aiming to efficiently and accurately compose the mode scattering in case of arbitrary reflections at feeding ports. In the numerical process, the antenna reciprocity is utilized in obtainning the basis for the scattering composition analysis. In case of various loading conditions, numerical results are presented, showing that the composed scattering results by the S-matrix model agree well with that obtained by direct full scale simulations. Then the methods for obtaining radiation and scattering of a large antenna array based on results of a small array, are reviewed and extended in composing the large antenna array scattering in case of variable loading conditions. And, promising results are obtained.
Citation
Ming Jin, Yang Bai, and Hongcheng Yin, "Mono-Static Scattering from Array Antennas with Arbitrary Loadings," Progress In Electromagnetics Research M, Vol. 38, 133-141, 2014.
doi:10.2528/PIERM14080605
References

1. Wiesbeck, W. and E. Heidrich, "Wide-band multiport antenna characterization by polarimetric rcs measurements," IEEE Trans. on Antennas Propagat., Vol. 46, No. 3, 341-350, 1998.
doi:10.1109/8.662653

2. Shrestha, S., M. D. Balachandran, M. Agarwal, L. Zou, and K. Varahramyan, "A method to measure radar cross section parameters of antennas," IEEE Trans. on Antennas Propagat., Vol. 56, No. 11, 3494-3500, 2008.
doi:10.1109/TAP.2008.2005541

3. Hu, S., H. Chen, C. Law, Z. Shen, L. Zhu, W. Zhang, and W. Dou, "Backscattering cross section of ultrawideband antennas," IEEE Antennas Wireless Propagation Lett., Vol. 6, 70-73, 2007.
doi:10.1109/LAWP.2007.893069

4. Liu, Y., S. Gong, and D. Fu, "Theoretic study of antenna scattering," ACTA Electronica Sinica, Vol. 33, No. 9, 1611-1613, 2005 (in Chinese).

5. Jehn, D. and S. Lee, "Inband scattering from arrays with series feed networks," IEEE Trans. on Antennas Propagat., Vol. 43, No. 8, 867-873, 1995.
doi:10.1109/8.402207

6. Jehn, D. and V. Flokas, "In band scattering from arrays with parallel feed networks," IEEE Trans. on Antennas Propagat., Vol. 44, No. 2, 172-178, 1996.
doi:10.1109/8.481644

7. Zhang, S., S. Gong, Y. Guan, and Q. Gong, "Synthesis of array radiation and scattering patterns including mutual coupling," Chinese Journal of Computational Physics, Vol. 28, No. 3, 420-426, 2011 (in Chinese).

8. Kelly, D. and W. Stutzman, "Array antenna pattern modeling methods that include mutual coupling effects," IEEE Trans. on Antennas Propagat., Vol. 41, No. 12, 1625-1632, 1993.
doi:10.1109/8.273305

9. Maaskant, R., M. Ivashina, O. Iupikov, E. Redkina, S. Kasturi, and D. Schaubert, "Analysis of large microstrip-fed tapered slot antenna arrays by combining electrodynamic and quasi-static field models," IEEE Trans. on Antennas Propagat., Vol. 59, No. 6, 1798-1807, 2011.
doi:10.1109/TAP.2011.2122213

10. Zhang, S., S. Gong, Q. Gong, Y. Guan, and B. Lu, "Application of the active element pattern method for calculation of the scattering pattern of large finite array," IEEE Antennas Wireless Propagation Lett., Vol. 10, 83-86, 2011.
doi:10.1109/LAWP.2011.2111410

11. Zhang, S., S. Gong, and Y. Liu, "Fast method for calculating the scattering from large plane arrays," ACTA Electronica Sinica, Vol. 41, No. 9, 1680-1684, 2013 (in Chinese).

12., http://www.feko-info.com.