Vol. 35
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-03-03
Optimizing Startup Frequency Setting of the Inductive Power Transfer System
By
Progress In Electromagnetics Research M, Vol. 35, 67-75, 2014
Abstract
Based on energy injection and free resonant mode, an approach to optimize the startup frequency setting of the voltage-fed inductive power transfer (IPT) system is proposed to mitigate the effects of uncertain system parameters and load conditions. Differential equations of the primary resonant network on the free resonant mode is firstly established, then the free resonant frequency with different parameters and load conditions is calculated and verified with the soft-switching frequency of system based on stroboscopic mapping modeling method and fixed points theory. By controlling the micro-energy injection of system and free resonance, the frequency of free resonant mode is detected, and is regarded as the fixed frequency of startup process. Hence, the proposed strategy solves the uncertainty of the startup frequency and system re-setting to fit with changed system parameters and load conditions. This method also initiates immediate protection when the system operates under zero loads. In sum, our experimental results verify the theoretical implication, effectiveness, and merits of the proposed approach.
Citation
Zhi-Hui Wang, Jing Wu, Yue Sun, and Xiao Lv, "Optimizing Startup Frequency Setting of the Inductive Power Transfer System," Progress In Electromagnetics Research M, Vol. 35, 67-75, 2014.
doi:10.2528/PIERM14012012
References

1. Huh, J., S. W. Lee, W. Y. Lee, G. H. Cho, and C. T. Rim, "Narrow-width inductive power transfer system for online electrical vehicles," IEEE Trans. Power Electron., Vol. 26, No. 12, 3666-3679, Dec. 2011.
doi:10.1109/TPEL.2011.2160972

2. Zhong, W. X., X. Liu, and S. Y. Hui, "A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features," IEEE Trans. Ind. Electron., Vol. 58, No. 9, 4136-4144, Sep. 2011.
doi:10.1109/TIE.2010.2098379

3. Neath, M. J., U. K. Madawala, and D. J. Thrimawithana, "A new controller for bi-directional inductive power transfer systems," 2011 IEEE Inter. Symp. Ind. Electron., 1951-1956, 2011.
doi:10.1109/ISIE.2011.5984457

4. Mcdonough, M., P. Shamsi, and B. Fahimi, "Application of multi-port power electronic interface for contactless transfer of energy in automotive applications," 2011 IEEE Digital Object Identifier, VPPC, 1-6, 2011.

5. Hui, S. Y. R. and W. W. C. Ho, "A new generation of universal contactless battery charging platform for portable consumer electronic equipment," IEEE Trans. Power Electron., Vol. 20, No. 3, 620-627, 2005.
doi:10.1109/TPEL.2005.846550

6. Abdolkhani, A. and A. P. Hu, "A novel detached magnetic coupling structure for contactless power transfer," 37th Annual Conference on IEEE Industrial Electronics Society, IECON 2011, Vol. 1103, No. 1108, 2001.

7. Matsumoto, H., Y. Neba, K. Ishizaka, et al. "Comparison of characteristics on planar contactless power transfer systems," IEEE Trans. Power Electron., Vol. 27, No. 6, 2980-2993, Jun. 2012.
doi:10.1109/TPEL.2011.2178434

8. Budhia, M., J. T. Boys, G. A. Covic, et al. "Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems," IEEE Trans. Ind. Electron., Vol. 60, No. 1, 318-328, 2013.
doi:10.1109/TIE.2011.2179274

9. Zhao, Z. B., Y. Sun, Y. Zhai, and F. X. Yang, "Constant voltage output of dynamic loads in voltage-fed CPT systems," Journal --- Huazhong University of Science and Technology Nature, Science Edition, Vol. 39, No. 9, 66-70, Sep. 2011.

10. Tang, C. S., "Study on soft switching operating points of contactless power transfer system and their application,", Ph.D. Dissertation, Department of Automation, Chongqing University, 2009.

11. Tang, C. S., Y. Sun, Y. G. Su, et al. "Determining multiple steady-state ZCS operating points of a switch-mode contactless power transfer system," IEEE Trans. Power Electron., Vol. 24, No. 2, 416-425, 2009.
doi:10.1109/TPEL.2008.2007642

12. Tang, C. S., Y. Sun, X. Dai, et al. "Extended stroboscopic mapping (ESM) method: A soft-switching operating points determining approach of resonant inverters," 2010 IEEE International Conference on Sustainable Energy Technologies (ICSET), 1-5, Kandy, Sri Lanka, 2010.

13. Wang, C.-S., G. A. Covic, and O. H. Stielau, "Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems," IEEE Trans. Ind. Electron., Vol. 51, No. 1, 148-156, Feb. 2004.
doi:10.1109/TIE.2003.822038

14. Wang, Z. H., "Study on contactless power transfer mode based on envelope modulation,", Ph.D. Dissertation, Department of Automation, Chongqing University, 2009.
doi:10.1109/TIE.2003.822038