Vol. 33
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-10-10
A Monolithic Frequency Selective Strucutre with Dual-Band Quasi-Elliptic Filtering Response
By
Progress In Electromagnetics Research M, Vol. 33, 95-104, 2013
Abstract
This paper presents the design of a monolithic structure with dual-band quasi-elliptic frequency selective filtering responses. The frequency selective structure consists of a two-dimensional (2-D) array of cavities apertured with six ring slots. The transmission response is with a quasi-elliptic passband in lower frequency, and an elliptic passband in upper frequency. By placing transmission zeros near the passband edge, the proposed structure is characterized with high selectivity, rapid rolloff, and high separation between two passbands. Besides, the working principles and influence of the dimensional parameters are fully investigated with simulations and analysis, which is helpful to the design. In this design, five resonances and three transmission zeros are obtained with a simple unit by introducing coupling and phase controlling. This work will be meaningful in study of three dimensional frequency selective structures with high performance.
Citation
Xian-Jun Huang, Peiguo Liu, Jianfeng Tan, Dongming Zhou, and Gaosheng Li, "A Monolithic Frequency Selective Strucutre with Dual-Band Quasi-Elliptic Filtering Response," Progress In Electromagnetics Research M, Vol. 33, 95-104, 2013.
doi:10.2528/PIERM13080502
References

1. Rashid, A. K. and Z. Shen, "Three-dimensional frequency selective surfaces," Int. Conf. Communications, Circuits, and Systems (ICCCAS), China, Jul. 2010.

2. Lu, Z.-H., P.-G. Liu, and X.-J. Huang, "A novel three-dimensional frequency selective structure," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 588-591, 2012.
doi:10.1109/LAWP.2012.2201438

3. Abbaspour, A., K. Sarabandi, and G. M. Rebeiz, "Antenna-filter-antenna array as a class of bandpass frequency selective surfaces," IEEE Trans. on Microwave Theory and Tech., Vol. 52, No. 8, 1781-1789, 2004.
doi:10.1109/TMTT.2004.831572

4. Luo, G. Q., W. Hong, Z. C. Hao, B. Liu, W. D. Li, J. X. Chen, H. X. Zhou, and K. Wu, "Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology," IEEE Trans. on Antennas and Propag., Vol. 53, 4035-4043, 2005.

5. Zuo, Y., A. K. Rashid, Z. Shen, and Y. Feng, "Design of dual-polarized frequency selective structure with quasi-elliptic bandpass response," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 624-626, 2012.

6. Munk, B. A., Frequency Selective Surface: Theory and Design, Wiley-Interscience, New York, 2011.

7. Bianchi, G. and R. Sorrentino, Electronic Filter Simulation & Design, McGraw-Hill, New York, 2007.

8. Luo, G. Q., W. Hong, Q. H. Lai, K. Wu, and L. L. Sun, "Design and experimental verification of compact frequency-selective surface with quasi-elliptic bandpass response," IEEE Trans. on Microwave Theory and Tech., Vol. 55, 2481-2487, 2007.
doi:10.1109/TMTT.2007.910085

9. Rashid, A. K., Z. Shen, and B. Li, "An elliptical bandpass frequency selective structure based on microstrip lines," IEEE Trans. on Antennas and Propag., Vol. 60, 4661-4669, 2012.
doi:10.1109/TAP.2012.2207355

10. Yang, H.-Y., S.-X. Gong, P.-F. Zhang, and Y. Guan, "Compound frequency selective surface with quasi-elliptic bandpass response," Electronics Letters, Vol. 46, No. 1, 7-8, 2010.
doi:10.1049/el.2010.2600

11. Luo, G. Q., W. Hong, H. J. Tang, J. X. Chen, and K. Wu, "Dualband frequency-selective surfaces using substrate-integrated waveguide technology," IET Microw. Antennas Propag., Vol. 1, No. 2, 408-413, 2007.
doi:10.1049/iet-map:20060039

12. Alan Davis, W., Radio Frequency Circuit Design, John Wiley & Sons, Inc., New York, 2011.

13. Harrington, R. F., "Time-harmonic Electronmagnetic Fields," IEEE Press, John Wiley & Sons, Inc., New York, 2001.

14. Zhang, Y., G. Liu, and , "Analysis of resonance frequency for rectangular cavity with apertures and embedded materials," Proc. Int. Conf. Intelligent Computing and Intelligent Systems, 271-273, 2010.