Vol. 31
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-07-08
Realization of Linear-to-Circular Polarization Conversion by a Single Bifilar Particle
By
Progress In Electromagnetics Research M, Vol. 31, 231-246, 2013
Abstract
In this paper, we provide a new theoretical model describing mechanism of electromagnetic radiation (and scattering) by passive single- and double-stranded (bifilar) helices. The proposed model is derived from basic physical principles till the end formulas which were computer processed for predicting a polarization type of the wave scattered by a helix. Comparison of the two types of helical oscillators revealed radical differences in their scattering performance (intensity and polarization). Optimal parameters of the bifilar helix for transformation of the polarization state from linear to circular were found for a non-axial direction of the incident and scattered field. Key features of the proposed model were confirmed by computer simulations.
Citation
Alexei Balmakou, Igor V. Semchenko, and Masaaki Nagatsu, "Realization of Linear-to-Circular Polarization Conversion by a Single Bifilar Particle," Progress In Electromagnetics Research M, Vol. 31, 231-246, 2013.
doi:10.2528/PIERM13050907
References

1. Lindell, I. V., A. H. Sihvola, and J. Kurkijarvi, "Karl F. Lindman: The last Hertzian, and a harbinger of electromagnetic chirality," IEEE Antennas and Propagation Magazine, Vol. 34, No. 3, 24-30, 1992.
doi:10.1109/74.153530

2. Guerin, F., P. Banneller, and M. Labeyrie, "Scattering of electromagnetic waves by helices and application to the modelling of chiral composites. I: Simple effective-medium theories," Journal of Physics D: Applied Physics, Vol. 28, 623, 1995.
doi:10.1088/0022-3727/28/4/004

3. Roy, J. E. and L. Shafai, "Reciprocal circular-polarization-selective surface," IEEE Antennas and Propagation Magazine, Vol. 38, No. 6, 18-33, 1996.
doi:10.1109/74.556517

4. Hodgkinson, I. J., Q. Hong, K. E. Thorn, A. Lakhtakia, and M. W. Mccall, "Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: Theory and experiment," Optics Communications, Vol. 184, 57-66, 2000.
doi:10.1016/S0030-4018(00)00935-4

5. Yang, Z. Y., M. Zhao, P. X. Lu, and Y. F. Lu, "Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures," Optics Letters, Vol. 35, No. 15, 2588-2590, 2010.
doi:10.1364/OL.35.002588

6. Chremmos, I., "Analytical computation of the electro-magnetic field produced by an optical fiber helix," Progress In Electromagnetics Research B, Vol. 16, 189-207, 2009.
doi:10.2528/PIERB09050503

7. Hady, L. K. and A. A. Kishk, "Electromagnetic scattering from conducting circular cylinder coated by metamaterials and loaded with helical strips under oblique incidence," Progress In Electromagnetics Research B, Vol. 3, 189-206, 2008.
doi:10.2528/PIERB07121107

8. Xiong, , X., X.-C. Chen, M. Wang, R.-W. Peng, D.-J. Shu, C. Sun, "Optically nonactive assorted helix array with interchangeable magnetic/electric resonance," Applied Physics Letters, Vol. 98, No. 7, 071901, 2011.
doi:10.1063/1.3554704

9. Semchenko, I. V., S. A. Khakhomov, and S. A. Tretyakov, "Chiral metamaterial with unit negative refraction index," The European Physical Journal Applied Physics, Vol. 46, No. 3, 32607, 2009.
doi:10.1051/epjap:2008131

10. Balmakov, A. P., I. V. Semchenko, S. A. Khakhomov, and M. Nagatsu, "Microwave circular polarizer based on bifilar helical particles," Problems of Physics, Mathematics and Technics, Vol. 1, No. 14, 7-12, 2013.

11. Guven, K., E. Saenz, R. Gonzalo, E. Ozbay, and S. Tretyakov, "Metamaterial-based cloaking with sparse distribution of spiral resonators," Radio Science, Vol. 7711, No. 1, 771111-771114, 2010.

12. Wu, C., H. Li, X. Yu, F. Li, H. Chen, and C. Chan, "Metallic helix array as a broadband wave plate," Physical Review Letters, Vol. 107, No. 7, 1-5, 2011.

13. Semchenko, I. V., S. A. Khakhomov, E. V. Naumova, V. Y. Prinz, S. V. Golod, and V. V. Kubarev, "Study of the properties of artificial anisotropic structures with high chirality," Crystallography Reports, Vol. 56, No. 3, 366-373, 2011.
doi:10.1134/S1063774511030278

14. Seet, K. K., V. Mizeikis, S. Juodkazis, and H. Misawa, "Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1 μm," Applied Physics Letters, Vol. 88, No. 22, 221101, 2006.
doi:10.1063/1.2207841

15. Volakis, J. L., Antenna Engineering Handbook, 4th Ed., 1754, McGraw-Hill Co., 2007.

16. Serdyukov, A., I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications, 337, Gordon and Breach, New York, 2001.

17. Jaggard, D. L., A. R. Mickelson, and C. H. Papas, "On electromagnetic waves in chiral media," Applied Physics, Vol. 18, No. 2, 211-216, 1979.
doi:10.1007/BF00934418

18. Landau, L. D. and E. M. Lifshitz, The Classical Theory of Fields, 4th Ed., 428, Butterworth-Heinemann, 1980.

19. Yavorsky, B. M., A. A. Detlaf, and N. Weinstein, Handbook of Physics, 4th Ed., 965, Central Books Ltd., 1973.

20. Balanis, C. A., "Antenna Theory," John Wiley and Sons, Inc., 960, 1996.

21. Semchenko, I. V., S. A. Khakhomov, and A. P. Balmakov, "Polarization selectivity of electromagnetic radiation of deoxyribonucleic acid," Journal of Communications Technology and Electronics, Vol. 52, No. 9, 996-1001, 2007.
doi:10.1134/S1064226907090070

22. Semchenko, I., S. Khakhomov, and A. Balmakov, "Polarization selectivity of interaction of DNA molecules with X-ray radiation," Biophysics, Vol. 55, No. 2, 194-198, 2010.
doi:10.1134/S0006350910020053

23. Semchenko, I. V., S. A. Khakhomov, and A. L. Samofalov, "Transformation of the polarization of electromagnetic waves by helical radiators," Journal of Communications Technology and Electronics, Vol. 52, No. 8, 850-855, 2007.
doi:10.1134/S1064226907080037

24. Watson, J. D. and F. H. C. Crick, "A structure for deoxyribose nucleic acid," Nature, Vol. 171, No. 4356, 737-738, 1953.
doi:10.1038/171737a0

25. Mandelkern, M., J. G. Elias, D. Eden, and D. M. Crothers, "The dimensions of DNA in solution," Journal of Molecular Biology, Vol. 152, No. 1, 153-161, 1981.
doi:10.1016/0022-2836(81)90099-1

26. Wu, C., H. Li, Z. Wei, X. Yu, and C. T. Chan, "Theory and experimental realization of negative refraction in a metallic helix array," Physical Review Letters, Vol. 105, 247401, 2010.
doi:10.1103/PhysRevLett.105.247401

27. Cheng, Q. and T. Cui, "Negative refractions in uniaxially anisotropic chiral media," Physical Review B, Vol. 73, No. 11, 1-4, 2006.
doi:10.1103/PhysRevB.73.113104

28. Balmakou, A., I. Semchenko, and M. Nagatsu, "Realization of negative refraction in a bifilar prism-type array metamaterial," Applied Physics Express, Vol. 6, 072601, 2013.
doi:10.7567/APEX.6.072601

29. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003.
doi:10.1163/156939303322226356

30. Masson, J. and G. Gallot, "Terahertz achromatic quarter-wave plate," Optics Letters, Vol. 31, No. 2, 265-267, 2006.
doi:10.1364/OL.31.000265

31. Roberts, N. W., T.-H. Chiou, N. J. Marshall, and T. W. Cronin, "A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region," Nature Photonics, Vol. 189, 1038, 2009.