Vol. 29

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Low Loss Circular Birefringence in Artificial Triple Helices

By Amornthep Sonsilphong and Nantakan Wongkasem
Progress In Electromagnetics Research M, Vol. 29, 267-278, 2013


Low loss circular birefringence is found in three-dimensional artificial triple helices. High values of chirality index are generated. Within the transmission bandwidth, there is a significant difference in the refractive index value of the right- and left- polarized waves. The outgoing waves from a wedge structure designed from these triple helices are proved to split with a wide angle. The wave polarizations agree with earlier simulation results.


Amornthep Sonsilphong and Nantakan Wongkasem, "Low Loss Circular Birefringence in Artificial Triple Helices," Progress In Electromagnetics Research M, Vol. 29, 267-278, 2013.


    1. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, Lecture Note in Physics: Time-harmonic Electromagnetic Fields in Chiral Media, Springer, Heidelberg, Berlin, 1989.

    2. Xia, Y., Y. Zhoua, and Z. Tang, "Chiral inorganic nanoparticles: Origin, optical properties and bioapplications," Nanoscale, Vol. 3, 1374-1382, 2011.

    3. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House Publishers, , Boston, MA, 1994.

    4. Wongkasem, N. and A. Akyurtlu, "Light splitting effects in chiral metamaterials," J. Opt., Vol. 12, 035101, 2010.

    5. Sonsilphong, A. and N. Wongkasem, "Novel technique for high refractive index manifestation," International Conference on Electromagnetics in Advanced Applications, 536-539, 2011.

    6. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.

    7. Gansel, J. K., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M.Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, 1513, 2009.

    8. Gansel, J. K., M. Wegener, S. Burger, and S. Linden, "Gold helix photonic metamaterials: A numerical parameter study," Optics Express, Vol. 18, 1059, 2010.

    9. Yang, Z. Y., M. Zhao, P. X. Lu, and Y. F. Lu, "Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures," Optics Letters, Vol. 35, 2588-2590, 2010.

    10. Yang, Z. Y., M. Zhao, and P. X. Lu, "How to improve the signal-to-noise ratio for circular polarizers consisting of helical metamaterials?," Optics Express, Vol. 19, 4255-4260, 2011.

    11. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Multi-band circular polarizer using planar spiral metamaterial structure," Optics Express, Vol. 20, 16050-16058, 2012.

    12. Ma, X., C. Huang, M. Pu, Y. Wang, Z. Zhao, C. Wang, and X. Luo, "Dual-band asymmetry chiral metamaterial based on planar spiral structure," Appl. Phys. Lett., Vol. 101, 161901, 2012.

    13. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization independent chiral metamaterials absorbers," Phys. Rev. B., Vol. 80, 033108, 2009.

    14. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, 035407, 2009.

    15. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, 121104(R), 2009.

    16. Li, Z., R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four `U' split ring resonators," Appl. Phys. Lett., Vol. 97, 081901, 2010.

    17. Zhao, R., L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, "Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index," Phys. Rev. B, Vol. 83, 035105, 2011.

    18. Wang, B., J. Zhou, T. Koschny, and C. M. Soukoulis, "Nonplanar chiral metamaterials with negative index," Appl. Phys. Lett., Vol. 94, 151112, 2009.

    19. Wongkasem, N., C. Kamtongdee, A. Akyurtlu, and K. Marx, "Artificial multiple helices: EM and polarization properties," J. Opt., Vol. 12, 075102, 2010.

    20. Sonsilphong, A. and N. Wongkasem, "Three-dimensional artificial double helices with high negative refractive index," J. Opt., Vol. 14, 105103, 2012.

    21. Raos, G., "Degrees of chirality in helical structures," Macromol. Theory Simul., Vol. 11, 739-750, 2002.

    22. Green, M. M., N. C. Peterson, T. Sato, A. Teramoto, R. Cook, and S. Lifson, "A helical polymer with a cooperative response to chiral information," Science, Vol. 268, 1860-1866, 1995.

    23. Sonsilphong, A. and N. Wongkasem, "Transmission properties in chiral metamaterials," International Journal of Physical Sciences, Vol. 7, No. 21, 2829-2837, 2012.

    24. CST Microwave Studio, , http://www.cst.com/.

    25. Wang, B., J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Chiral metamaterials: Simulations and experiments," J. Opt. A: Pure Appl. Opt., Vol. 11, 114003, 2009.

    26. Ranga, Y., L. Matekovits, K. P. Esselle, and A. R. Weily, "Multi-octave frequency selective surface reflector for ultrawideband antennas," IEEE Antennas and Wireless Propagat. Letters, Vol. 10, 219-222, 2011.

    27. Balanis, C. A., Advanced Engineering Electromagnetic, John Wiley & Sons, 1989.

    28. Orfanidis, S. J., "Electromagnetic waves and antennas,", Online URL: http://www.ece.rutgers.edu/»orfanidi/ewa/.

    29., "IEEE standard definitions of terms for antennas,", IEEE Std 145-1983, Revised IEEE Std 145-1993, 1993.