Vol. 29

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Perforated Nanoantenna Reflectarray

By Saber Zainud-Deen, Hend Abd El-Azem Malhat, Shaymaa Gaber, and Kamal Awadalla
Progress In Electromagnetics Research M, Vol. 29, 253-265, 2013


This paper presents a design of perforated nanoantenna reflectarray. The use of metallic nanostructures made of Silver and/or Gold at appropriate wavelength cause fascinating unusual electromagnetic effects. Reflectarray consists of an array of unit cell made from Silver is investigated. The effect of the number of perforated holes in the unit cell configurations is investigated for proper reflection coefficient phase compensation. A linearly polarized pyramidal nano-horn is used to feed the perforated nanoantenna reflectarray. The radiation characteristics of 9 × 9 perforated nanoantenna reflectarray are illustrated. A high gain of 20.5 dB is obtained at the designed frequency of 735 THz. A comparison between solid Silver sheet with no perforation holes and the proposed perforated reflectarray is explained.


Saber Zainud-Deen, Hend Abd El-Azem Malhat, Shaymaa Gaber, and Kamal Awadalla, "Perforated Nanoantenna Reflectarray," Progress In Electromagnetics Research M, Vol. 29, 253-265, 2013.


    1. Huang, J. and J. A. Encinar, Reflectarray Antennas, John Wiley and Sons, Inc., Hoboken, NJ, USA, 2007.

    2. Hansen, R. C., Phased Array Antennas, John Wiley & Sons, 1998.

    3. Dzulkipli, I., M. H. Jamaluddin, R. Ngah, M. R. B. Kamarudin, N. Seman, and M. K. Abd Rahim, "Mutual coupling analysis using FDTD for dielectric resonator antenna reflectarray radiation prediction," Progress In Electromagnetics Research B, Vol. 41, 121-136, 2012.

    4. Jamaluddin, M. H., R. Sauleau, X. Castel, R. Benzerga, L. Le Coq, R. Gillard, and T. Koleck, "Design, fabrication and characterization of a dielectric resonator antenna reflectarray in Ka-band," Progress In Electromagnetics Research B, Vol. 25, 261-275, 2010.

    5. Zainud-Deen, S. H., E. Abd, A. A. Mitkees, and A. A. Kishk, "Design of dielectric resonator reflectarray using full-wave analysis," National Radio Science Conference (NRSC 2009), 1-9, Egypt, 2009.

    6. Cadoret, D., L. Marnat, R. Loison, R. Gillard, H. Legay, and B. Salome, "A dual linear polarized printed reflectarray using slot oaded patch elements," The 2nd European Conference Antenna and Propagation (EUCAP 2007), 1-5, 2007.

    7. Radi, Y., S. Nikmehr, and A. Pourziad, "A novel bandwidth enhancement technique for X-band RF MEMS actuated reconfigurable reflectarray," Progress In Electromagnetics Research, Vol. 111, 179-196, 2011.

    8. Rengarajan, S. R., "Reflectarrays of rectangular microstrip patches for dual-polarization dual-beam radar interferometers," Progress In Electromagnetics Research, Vol. 133, 1-15, 2013.

    9. Novotny, L. and N. van Hulst, "Antennas for light," Nature Photonics, Vol. 5, 83-90, February 2011.

    10. Novotny, L. and B. Hecht, Principles of Nano-optics, Cambridge University Press, New York, USA, 2006.

    11. Miroshnichenko, A. E., I. S. Maksymov, R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivshar, "An arrayed nanoantenna for broadband light emission and detection," Physica Status Solidi (RRL)-rapid Research Letters, Vol. 5, No. 9, 347-349, September 2011.

    12. Stockman, M. I., "Nanofocusing of optical energy in tapered plasmonic waveguides," Physical Review Letters, Vol. 93, No. 13, 7404-7408, 2004.

    13. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Material, Vol. 9, 205-213, September 2010.

    14. Liu, N., M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, "Nanoantenna-enhanced gas sensing in a single tailored nanofocus," Nature Material, Vol. 10, 631-636, May 2011.

    15. De Angelis, F., G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. di Fabrizio, "Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons," Nature Nanotechnology, Vol. 5, 67-72, November 2010.

    16. Maksymov, I. S., , M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, "Metal-coated nanocylinder cavity for broadband nonclassical light emission," Physical Review Letters, Vol. 105, No. 18, 502-506, 2010.

    17. Al'u, A. and N. Engheta, "Wireless at the nanoscale: Optical interconnects using matched nanoantennas," Physical Review Letters, Vol. 104, No. 21, 3902-3906, 2010.

    18. Ahmadi, A., "Metamaterials demonstrating focusing and radiation characteristics applications,", Ph.D. Thesis, The Field of Electrical Engineering, Northeastern University, Boston, Massachusetts, August 2010.

    19. Chair, R., A. A. Kishk, and K. F. Lee, "Experimental investigation for wideband perforated dielectric resonator antenna," Electronic Letters, Vol. 42, No. 3, 137-139, February 2006.

    20. Cooke, S. J., R. Shtokhamer, A. A. Mondelli, and B. Levush, "A finite integration method for conformal, structured-grid, electromagnetic simulation," Journal of Computational Physics, Vol. 215, 321-347, 2006.

    21. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science Magazine, Vol. 311, No. 5758, 189-193, January 2006.

    22. Zhang, Y. and A. A. Kishk, "Analysis of dielectric resonator antenna arrays with supporting perforated rods," 2nd European Conf. on Antennas and Propag., (EuCAP 2007), 1-5, 2007.

    23. Ramaccia, D., F. Bilotti, A. Toscano, and A. Massaro, "Efficient and wideband horn nanoantenna," Optics Letters, Vol. 36, No. 10, 1743-1745, May 2011.

    24. Ramaccia, D., F. Bilotti, A. Toscano, R. Cingolani, and A. Massaro, "Electrical and radiation properties of a horn nano-antenna at near infrared frequencies," Proc. of IEEE (AP-S/URSI), 2407-2410, 2011.