Vol. 30

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-04-18

Scintillation Index of a Gaussian Schell-Model Beam on Slant Atmospheric Turbulence

By Ning-Jing Xiang and Zhen-Sen Wu
Progress In Electromagnetics Research M, Vol. 30, 153-165, 2013
doi:10.2528/PIERM12123007

Abstract

Based on the altitude-dependent model of the ITU-R slant atmospheric turbulence structure constant model, we present scintillation index calculations for a partially coherent Gaussian Schell-model (GSM) beam under all irradiance fluctuation conditions. The longitudinal and radial components of the scintillation index are treated separately. Our results correctly reduce to the result of the horizontal path with atmospheric structure constant fixed; and simplify to a fully coherent Gaussian beam with source coherence parameter ζ representing unit. The numerical conclusions indicate that within specific source and parameter ranges, a partially coherent GSM beam is capable of offering less scintillation in comparison with the full coherent Gaussian beam. Before the maximum value of the scintillation, the scintillation index of the partially coherent GSM beam will decrease with the increased altitude. However the off axis radial scintillation index will vanish when the Rytov variance is infinity.

Citation


Ning-Jing Xiang and Zhen-Sen Wu, "Scintillation Index of a Gaussian Schell-Model Beam on Slant Atmospheric Turbulence," Progress In Electromagnetics Research M, Vol. 30, 153-165, 2013.
doi:10.2528/PIERM12123007
http://jpier.org/PIERM/pier.php?paper=12123007

References


    1. Andrews, L. C. and R. L. Phillips, Laser Beam Propagation through Random Media, SPIE Press, Bellingham, 1998.

    2. Banakh, V. A. and V. L. Mironov, Lidar in a Turbulent Atmosphere, Artech House, Boston, 1987.

    3. Bufton, J., "Scintillation statistics measured in an earth-space-earth retroreflector link," Appl. Opt., Vol. 16, 2654-2660, 1977.
    doi:10.1364/AO.16.002654

    4. Bufton, J., R. Iyer, and L. Taylor, "Scintillation statistics caused by atmospheric turbulence and speckle in satellite laser ranging," Appl. Opt., Vol. 16, 2408-2412, 1977.
    doi:10.1364/AO.16.002408

    5. Goodman, J. W., Statistical Optics, Wiley, New York, 1985.

    6. Lawrence, T. W., D. M. Goodman, E. M. Johansson, and J. P. Fitch, "Speckle imaging of satellites at the U.S. Air Force Maui Optical Station," Appl. Opt., Vol. 31, 6307-6321, 1992.
    doi:10.1364/AO.31.006307

    7. Labreyrie, A., "Attainment of diffraction-limited resolution in large telescopes by Fourier analysing speckle patterns in star images," Astron. Astrophys., Vol. 6, 85-87, 1970.

    8. Tatarskii, V. I., Wave Propagation in a Turbulent Medium, McGraw-Hill, New York, 1961.

    9. Chernov, L. A., Wave Propagation in a Random Medium, McGraw-Hill, New York, 1960.

    10. Ishimaru, A., Wave Propagation and Scattering in Random Media, Academic Press, New York, 1978.

    11. Gracheva, M. E. and A. S. Gurvich, "Strong fluctuations in the intensity of light propagated through the atmosphere close to the earth," Izvestiya VUZ Radiofizika, Vol. 8, 717-724, 1965.

    12. Gochelashvili, K. S. and V. I. Shishov, "Saturated fluctuations in the laser radiation intensity in a turbulent medium," Sov. Phys. JETP, Vol. 39, 605-609, 1974.

    13. Fante, R. L., "Inner-scale size effect on the scintillations of light in the turbulent atmosphere," J. Opt. Soc. Am., Vol. 73, 277-281, 1983.
    doi:10.1364/JOSA.73.000277

    14. Frehlich, R. G., "Intensity covariance of a point source in a random medium with a Kolmogorov spectrum and an inner scale of turbulence," J. Opt. Soc. Am. A, Vol. 4, 360-365, 1987.
    doi:10.1364/JOSAA.4.000360

    15. Hopen, C. Y. and L. C. Andrews, "Optical scintillation of a Gaussian beam in moderate-to-strong irradiance fluctuations," Proc. SPIE, Vol. 4, 142-150, 1999.

    16. Andrews, L. C., R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications, SPIE, 2001.
    doi:10.1117/3.412858

    17. Wu, Z. S. and H. Y. Wei, "Study on scintillation considering inner- and out-scales for laser beam propagation on the slant path through the atmospheric turbulence," Progress In Electromagnetics Research, Vol. 80, 277-293, 2008.
    doi:10.2528/PIER07112505

    18. Li, J., Y. Chen, S. Xu, Y. Wang, M. Zhou, Q. Zhao, Y. Xin, and F. Chen, "Average intensity and spreading of partially coherent four-petal Gaussian beams in turbulent atmosphere," Progress In Electromagnetics B, Vol. 24, 241-261, 2010.
    doi:10.2528/PIERB10062306

    19. Wang, F., Y. Cai, H. T. Eyyuboglu, and Y. K. Baykal, "Average intensity and spreading of partially coherent standard and elegant Laguerre-Gaussian beams in turbulent atmosphere," Progress In Electromagnetics Research, Vol. 103, 33-56, 2010.
    doi:10.2528/PIER10021901

    20. Beran, M. J. and A. M. Whitman, "Scintillation index calculations using an altitude-dependent structure constant," Appl. Opt., Vol. 27, 2178-2182, 1988.
    doi:10.1364/AO.27.002178

    21. Baker, G. J., "Gaussian beam weak scintillation: Low-order turbulence effects and applicability of the Rytov method," J. Opt. Soc. Am. A, Vol. 23, 395-417, 2006.
    doi:10.1364/JOSAA.23.000395

    22. Charnotskii, M., "Beam scintillations for ground-to-space propagation. Part I: Path integrals and analytic techniques," J. Opt. Soc. Am. A, Vol. 27, 2169-2179, 2010.
    doi:10.1364/JOSAA.27.002169

    23. Chu, X., "Evolution of beam quality and shape of HermitGaussian beam in non-Kolmogorov turbulence," Progress In Electromagnetics Research, Vol. 120, 339-353, 2011.

    24. Li, Y.-Q., Z.-S.Wu, and L.-G.Wang, "Polarization characteristics of a partially coherent Gaussian Schell-model beam in slant atmospheric turbulence," Progress In Electromagnetics Research, Vol. 121, 453-468, 2011.
    doi:10.2528/PIER11092201

    25. Baykal, Y. and H. T. Eyyuboglu, "Scintillation index of flat-topped Gaussian beams," Appl. Opt., Vol. 45, 7066-7066, 2006.
    doi:10.1364/AO.45.003793

    26. Eyyuboglu, H. T. and Y. Baykal, "Scintillation characteristics of cosh-Gaussian beams," Appl. Opt., Vol. 46, 1099-1106, 2007.
    doi:10.1364/AO.46.001099

    27. Eyyuboglu, H. T., Y. Baykal, and Y. Cai, "Scintillation calculations for partially coherent general beams via extended Huygens-Fresnel integral and self-designed Matlab function," Appl. Phys. B, Vol. 100, 597-609, 2010.
    doi:10.1007/s00340-010-4125-4

    28. Miller, W. B., J. C. Ricklin, and L. C. Andrews, "Scintillation of initially convergent Gaussian beams in the vicinity of the geometric focus," Appl. Opt., Vol. 34, 7066-7073, 1995.
    doi:10.1364/AO.34.007066

    29. Rickin, J. C. and F. M. Davidson, "Atmospheric optical communication with a Gaussian Schell beam," J. Opt. Soc. Am., Vol. 20, 856-863, 2003.
    doi:10.1364/JOSAA.20.000856

    30. Andrews, L. C., W. B. Miller, and J. C. Ricklin, "Spatial coherence of a Gaussian beam in weak and strong optical turbulence," J. Opt. Soc. Am. A, Vol. 11, 1653-1660, 1994.
    doi:10.1364/JOSAA.11.001653

    31. Young, C. Y. and L. C. Andrews, "Effects of a modified spectral model on the spatial coherence of a laser beam," Waves Random Media, Vol. 4, 385-397, 1994.
    doi:10.1088/0959-7174/4/3/011

    32. Ricklin, J. C., W. B. Miller, and L. C. Andrews, "Effective beam parameters and the turbulent beam waist for initially convergent Gaussian beams," Appl. Opt., Vol. 34, 7059-7065, 1995.
    doi:10.1364/AO.34.007059

    33. Korotkova, O., "A model for a partially coherent Gaussian beam in atmospheric turbulence with applications for lasercom and lidar systems,", M.S. University of Central Florida, 2003.

    34. ITU-R Document 3J/31-E, "On propagation data and prediction methods required for the design of space-to-earth and earth-to-space optical communication systems," Radiocommunication Study Group Meeting, International Telecommunication Union, 2001.