Vol. 28
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-01-23
Multiconductor Reduction Method for Modeling Crosstalk of Complex Cable Bundles in the Vicinity of a 60 Degree Corner
By
Progress In Electromagnetics Research M, Vol. 28, 201-211, 2013
Abstract
This paper presents a multiconductor reduction method for modeling electromagnetic crosstalk of complex cable bundles in the vicinity of a 60 degree corner. Based on the image theory and wide separation assumption, the per-unit-length parameters of the cable bundle can be obtained analytically. A modified six-step procedure is established to define the electrical and geometrical characteristics of the reduced cable bundle model compared with the original equivalent cable bundle method (ECBM). Numerical simulations are performed to demonstrate the viability and effectiveness of the method. This work can find wide applications in real environments.
Citation
Jian Yan, Zhuo Li, Liang Liang Liu, and Chang Qing Gu, "Multiconductor Reduction Method for Modeling Crosstalk of Complex Cable Bundles in the Vicinity of a 60 Degree Corner," Progress In Electromagnetics Research M, Vol. 28, 201-211, 2013.
doi:10.2528/PIERM12121904
References

1. Junior, W. V., M. H. Amaral, and A. Raizer, "EMC management: How to compare electromagnetic environmental measurements and equipment immunity levels," Progress In Electromagnetics Research Letters, Vol. 18, 165-177, 2010.
doi:10.2528/PIERL10092011

2. Sharaa, I., D. N. Aloi, and H. P. Gerl, "EMC model-based test-setup of an electrical system," Progress In Electromagnetics Research B, Vol. 11, 133-154, 2009.
doi:10.2528/PIERB08110307

3. Iqbal, M. N., M. F. B. A. Malek, S. H. Ronald, M. S. Bin Mezan, K. M. Juni, and R. Chat, "A study of the EMC performance of a graded-impedance, microwave, rice-husk absorber," Progress In Electromagnetics Research, Vol. 131, 19-44, 2012.

4. Roy, A., S. Ghosh, and A. Chakraborty, "Simple crosstalk model of three wires to predict nearend and farend crosstalk in an EMI/EMC environment to facilitate EMI/EMC modeling," Progress In Electromagnetics Research B, Vol. 8, 43-58, 2008.
doi:10.2528/PIERB08050503

5. Lin, D.-B., F.-N. Wu, W. S. Liu, C. K. Wang, and H.-Y. Shih, "Crosstalk and discontinuities reduction on multi-module memory bus by particle swarm optimization," Progress In Electromagnetics Research, Vol. 121, 53-74, 2011.
doi:10.2528/PIER11080302

6. Andrieu, , G., L. Kone, F. Bocquet, B. Demoulin, and J. P. Parmantier, "Multiconductor reduction technique for modeling common-mode currents on cable bundles at high frequency for automotive applications," IEEE Trans. on Electromagn. Compat.,, Vol. 50, No. 1, 175-184, Feb. 2008.
doi:10.1109/TEMC.2007.911914

7. Andrieu, G., A. Reineix, X. Bunlon, J. P. Parmantier, L. Kone, and B. Demoulin, "Extension of the `equivalent cable bundle method' for modeling electromagnetic emissions of complex cable bundles," IEEE Trans. on Electromagn. Compat., Vol. 51, No. 1, 108-118, Feb. 2009.
doi:10.1109/TEMC.2008.2007803

8. Andrieu, G., X. Bunlon, L. Kone, J. P. Parmantier, B. Demoulin, and A. Reineix, "The 'equivalent cable bundle method': An efficient multiconductor reduction technique to model industrial cable networks," New Trends and Developments in Automotive System Engineering, InTech, Jan. 2011.

9. Li, Z., L. L. Liu, and C. Q. Gu, "Generalized equivalent cable bundle method for modeling EMC issues of complex cable bundle terminated in arbitrary loads," Progress In Electromagnetics Research, Vol. 123, 13-30, 2012.
doi:10.2528/PIER11102601

10. Li, Z., Z. J. Shao, J. Ding, Z. Y. Niu, and C. Q. Gu, "Extension of the 'equivalent cable bundle method' for modeling crosstalk of complex cable bundles," IEEE Trans. on Electromagn. Compat., Vol. 53, No. 4, 1040-1049, Nov. 2011.
doi:10.1109/TEMC.2011.2146258

11. Li, Z., L. L. Liu, J. Ding, M. H. Cao, Z. Y. Niu, and C. Q. Gu, "A new simplification scheme for crosstalk prediction of complex cable bundles within a cylindrical cavity," IEEE Trans. on Electromagn. Compat., Vol. 54, No. 4, 940-943, Aug. 2012.
doi:10.1109/TEMC.2012.2200042

12. Liu, Y., L. Tong, W. Zhu, Y. Tian, and B. Gao, "Impedance measurements of nonuniform transmission lines in time domain using an improved recursive multiple reflection computation method," Progress In Electromagnetics Research, Vol. 117, , 149-164, 2011.

13. Miri, M. and M. McLain, "Electromagnetic radiation from unbalanced transmission lines," Progress In Electromagnetics Research B, Vol. 43, 129-150, 2012.

14. Yeh, Z.-Y. and Y.-C. Chiang, "A miniature CPW balun constructed with length-reduced 3 dB couples and a short redundant transmission line," Progress In Electromagnetics Research, Vol. 117, 195-208, 2011.

15. Deng, P.-H., J.-H. Guo, and W.-C. Kuo, "New Wilkinson power dividers based on compact stepped-impedance transmission lines and shunt open stubs," Progress In Electromagnetics Research, Vol. 123, 407-426, 2012.
doi:10.2528/PIER11111612

16. Koo, S.-K., H.-S. Lee, and Y. B. Park, "Crosstalk reduction effect of asymmetric stub loaded lines," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1156-1167, 2011.
doi:10.1163/156939311795762204

17. Paul, C. R., Analysis of Multiconductor Transmission Lines, Wiley-Interscience, New York, 1994.

18. Huang, C.-C., "Analysis of multiconductor transmission lines with nonlinear terminations in frequency domain," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 8, 1069-1083, 2005.
doi:10.1163/156939305775526142