Vol. 28
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-01-22
Semiconductor Quantum Dot Lasers as Pulse Sources for High Bit Rate Data Transmission
By
Progress In Electromagnetics Research M, Vol. 28, 185-199, 2013
Abstract
Multi Populations Rate Equations (MPREs) model is used to analyze the dynamic characteristics of the InAs/InP (113) B self assembled quantum dot laser. The resulting system of differentaial equations is solved using fourth-order Runge-Kutta method taking into consideration homogeneous and inhomogeneous broadening of optical gain. The effects of the injected current, Full Width at Half Maximum (FWHM) of the homogenous broadening, and initial relaxation time (phonon bottleneck) on the rise time, fall time, and hence the maximum allowable bit rate of the optical signal are investigated.
Citation
Mohamed Nady Abdul Aleem, Khalid Fawzy Ahmed Hussein, and Abd-El-Hadi Ammar, "Semiconductor Quantum Dot Lasers as Pulse Sources for High Bit Rate Data Transmission," Progress In Electromagnetics Research M, Vol. 28, 185-199, 2013.
doi:10.2528/PIERM12112505
References

1. Ludwig, R., S. Diez, A. Ehrhardt, L. Kuller, W. Pieper, and H. G. Weber, "A tunable femto-second mode locked semiconductor laser for applications in OTDM-systems," IEICE Trans. on Electron., Vol. E81-C, 140-145, 1998.

2. Yokoyama, H., "Highly stabilized mode-locked semiconductor diode lasers," Rev. Laser Eng., Vol. 27, 750-755, 1999.
doi:10.2184/lsj.27.750

3. Yokoyama, H., "Highly reliable mode-locked semiconductor lasers," IEICE Trans. on Electron., Vol. E85-C, No. 1, 27-36, 2002.

4. Jiang, L. A., M. E. Grein, E. P. Ippen, C. McNeilage, J. Searls, and H. Yokoyama, "Quantum limited noise performance of a mode locked laser diode," Opt. Lett., Vol. 27, No. 1, 49-51, 2002.
doi:10.1364/OL.27.000049

5. Feiste, U., R. Ludwig, C. Schubert, J. Berger, C. Schmidt, H. G.Weber, B. Schmauss, A. Munk, B. Buchold, D. Briggmann, F. Kueppers, and F. Rumpf, "160 Gbit/s transmission over 116km ¯eld-installed fiber using 160 Gbit/s OTDM and 40 Gbit/s ETDM," Electron. Lett., Vol. 37, No. 7, 443-445, 2001.
doi:10.1049/el:20010283

6. Agrawal, G. P., Fiber-Optic Communication Systems, Wiley, New York, 2002.
doi:10.1002/0471221147

7. Ramamurthy, B., "Switches, wavelength routers, and wavelength converters," Optical WDM Networks --- Principles and Practice,, K. M. Sivalingam and S. Subramaniam (eds)., 51-75, Kluwer, Boston, 2001.

8. Mukherjee, B. and H. Zang, "Introduction survey of state-of-the-art," Optical WDM Networks --- Principles and Practice, K. M. Sivalingam and S. Subramaniam (eds.), 3-24, Kluwer, Boston, 2001.

9. Rafailov, E. U., M. A. Cataluna, and E. A. Avrutin, "Ultrafast Lasers Based on Quantum Dot Structures: Physics and Devices," Wiley, New York, 2011.

10. Sugawara, M., R. K. Willardson, and E. R.Weber, "Self-Assembled InGaAs/GaAs Quantum Dots (Semiconductors and Semimetals)," Academic Press, 1999.

11. Sugawara, M., N. Hatori, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, "Modelling room-temperature lasing spectra of 1.3mm homogeneous broadening of optical gain under current injection," J. Appl. Phy., Vol. 97, No. 4, 043523, 2005.
doi:10.1063/1.1849426

12. Naeimi, A. S., D. G. Nahri, and S. A. Kazemipour, "Analysis of dynamic characteristics of self-assembled quantum dot lasers," World Applied Sciences Journal, Vol. 11, No. 1, 6-11, 2010.

13. Sugawara, M., K. Mukai, and Y. Nakata, "Light emission spectra of columnar-shaped self-assembled InGaAs/GaAs quantum-dot lasers: E®ect of homogeneous broadening of the optical gain on lasing characteristics," Appl. Phys. Lett., Vol. 74, No. 11, 1999.
doi:10.1063/1.123616

14. Markus, A., J. X. Chen, C. Paranthoen, A. Fiore, C. Platz, and O. Gauthier-Lafaye, "Simultaneous two-state lasing in quantum-dot lasers," Appl. Phys. Lett., Vol. 82, No. 12, 1818-1820, 2003.
doi:10.1063/1.1563742

15. Miska, P., C. Paranthoen, J. Even, O. Dehaese, H. Folliot, N. Bertru, S. Loualiche, M. Senes, and X. Marie, "Optical spectroscopy and modeling of double-cap grown InAs/InP quantum dots with long wavelength emission," Semicond. Sci. Technol., Vol. 17, L63-L67, 2002.
doi:10.1088/0268-1242/17/10/103

16. Grillot, F., K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, "Spectral analysis of 1.55 μm InAs-InP (113) B quantum-dot lasers based on a multipopulation rate equations model," IEEE Journal of Quantum Electronics, Vol. 45, No. 7, 872-878, 2009.
doi:10.1109/JQE.2009.2013174

17. Ohnesorge, B., M. Albrecht, J. Oshinowo, Y. Arakawa, and A. Forchel, "Rapid carrier relaxation in self-assembled InxGa1-x As/GaAs quantum dots," Phys. Rev. B, Vol. 54, No. 16, 11532, 1996.
doi:10.1103/PhysRevB.54.11532

18. Berg, T., S. Bischoff, I. Magnusdottir, and J. Mork, "Ultrafast gain recovery and modulation limitations in self assembled quantum-dot devices," IEEE Photonics Technol. Lett., Vol. 13, No. 6, 541-543, 2001.
doi:10.1109/68.924013

19. Markus, A., J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, "Impact of intraband relaxation on the performance of a quantum-dot laser," IEEE J. Sel. Topics Quantum Electron., Vol. 9, No. 5, 1308-1314, 2003.
doi:10.1109/JSTQE.2003.819494

20. Gioannini, M. and I. Montrosset, "Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers," IEEE Journal of Quantum Electronics, Vol. 43, No. 10, 2007.
doi:10.1109/JQE.2007.904306

21. Gioannini, M., A. Sevega, and I. Montrosset, "Simulations of di®erential gain and linewidth enhancement factor of quantum dot semiconductor lasers," Opt. Quantum Electron., Vol. 38, No. 4, 381-394, 2006.
doi:10.1007/s11082-006-0038-1

22. Farghal, A. E., S. Wageh, and A. E.-S. Abou-El-Azm, "The effect of electrode materials on the optical characteristics of infrared quantum dot-light emitting devices," Progress In Electromagnetics Research C, Vol. 19, 47-59, 2011.