Vol. 25

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-09-05

Self-Collimation Effect in Two-Dimentional Photonic Crystal Based on Optofludic Technology

By Majid Ebnali-Heidari, Farnaz Forootan, and Akbar Ebnali-Heidari
Progress In Electromagnetics Research M, Vol. 25, 255-268, 2012
doi:10.2528/PIERM12072107

Abstract

We propose an optofluidic based on two-dimensional (2D) rod-type silicon photonic crystal (PhC) waveguide that supports self-collimation effect over a large frequency and angle range without any defect or nano-scale variation in the PhC geometry. By analyzing the equi-frequency counter (EFC) of a triangular rod PhC-bands, we verify the optimum band of the structure which is suitable for self-collimation of light beams. By varying the refractive index of fluid being infiltrated into the background of PhC, we perform a systematic study of optofluidic self-collimation of light beams to achieve a wide range of angles and low loss of light. By means of selective microfluidic infiltration and remarkable dispersion properties, we show that it is possible to design auto-collimatator and negative refraction devices based on self-collimation effect with high transmission. We use the plane wave method (PWM) for analyzing the EFC and the finite difference time domain (FDTD) method for simulating the transmission properties.

Citation


Majid Ebnali-Heidari, Farnaz Forootan, and Akbar Ebnali-Heidari, "Self-Collimation Effect in Two-Dimentional Photonic Crystal Based on Optofludic Technology," Progress In Electromagnetics Research M, Vol. 25, 255-268, 2012.
doi:10.2528/PIERM12072107
http://jpier.org/PIERM/pier.php?paper=12072107

References


    1. John, S., "Strong localization of photons in certain dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486, 1987.
    doi:10.1103/PhysRevLett.58.2486

    2. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059-2062, 1987.
    doi:10.1103/PhysRevLett.58.2059

    3. Li, J., J. He, and Z. Hong, "Terahertz wave switch based on silicon photonic crystals," Applied Optics, Vol. 46, 5034-5037, 2007.
    doi:10.1364/AO.46.005034

    4. Li, Z., Y. Zhang, and B. Li, "Terahertz photonic crystal switch in silicon based on self-imaging principle," Optics Express, Vol. 14, 3887-3892, 2006.
    doi:10.1364/OE.14.003887

    5. Almeida, V. R., C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature, Vol. 431, 1081-1084, 2004.
    doi:10.1038/nature02921

    6. Zhang, Y. and B. Li, "Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals," Optics Express, Vol. 15, 9287-9292, 2007.
    doi:10.1364/OE.15.009287

    7. Notomi, M., "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B, Vol. 62, 10696, 2000.
    doi:10.1103/PhysRevB.62.10696

    8. Johnson, S. G. and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice, Springer, 2002.

    9. Kokabi, A., H. Zandi, S. Khorasani, and M. Fardmanesh, "Precision photonic band structure calculation of Abrikosov periodic lattice in type-II superconductors," Physica C: Superconductivity, Vol. 460, 1222-1223, 2007.
    doi:10.1016/j.physc.2007.04.055

    10. Mekis, A. and J. Joannopoulos, "Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides," Journal of Lightwave Technology, Vol. 19, 861, 2001.
    doi:10.1109/50.927519

    11. Kuang, W., C. Kim, A. Stapleton, and J. D. O'Brien, "Grating-assisted coupling of optical fibers and photonic crystal waveguides," Optics Letters, Vol. 27, 1604-1606, 2002.
    doi:10.1364/OL.27.001604

    12. Talneau, A., P. Lalanne, M. Agio, and C. Soukoulis, "Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths," Optics Letters, Vol. 27, 1522-1524, 2002.
    doi:10.1364/OL.27.001522

    13. Saynatjoki, A., M. Mulot, J. Ahopelto, and H. Lipsanen, "Dispersion engineering of photonic crystal waveguides with ring-shaped holes," Optics Express, Vol. 15, 8323-8328, 2007.
    doi:10.1364/OE.15.008323

    14. Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Applied Physics Letters,, Vol. 74, 1212, 1999.
    doi:10.1063/1.123502

    15. Rakich, P. T., M. S. Dahlem, S. Tandon, M. S. MihaiIbanescu, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. Ippen, "Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal," Nature Materials, Vol. 5, 93-96, 2006.
    doi:10.1038/nmat1568

    16. Prather, D. W., S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, "Self-collimation in photonic crystal structures: A new paradigm for applications and device development," Journal of Physics D: Applied Physics, Vol. 40, 2635, 2007.
    doi:10.1088/0022-3727/40/9/S04

    17. Djeffal, Z. E., H. Talleb, D. Lautru, and V. Fouad-Hanna, "Negative refractive index behavior through magneto-electric coupling in split ring resonators," Progress In Electromagnetics Research Letters, Vol. 22, 155-163, 2011.

    18. Hsu, H.-T. and C.-J. Wu, "Design rules for a Fabry-Perot narrow band transmission filter containing a metamaterial negative-index defect," Progress In Electromagnetics Research Letters, Vol. 9, 101-107, 2009.
    doi:10.2528/PIERL09032803

    19. Witzens, J. and A. Scherer, "Efficient excitation of self-collimated beams and single Bloch modes in planar photonic crystals," JOSA A, Vol. 20, 935-940, 2003.
    doi:10.1364/JOSAA.20.000935

    20. Witzens, L., M. Mazilu, and T. F. Krauss, "Beam steering in planar-photonic crystals: From superprism to supercollimator," Journal of Lightwave Technology, Vol. 21, 561, 2003.

    21. Pustai, D. , S. Shi, C. Chen, A. Sharkawy, and D. Prather, "Analysis of splitters for self-collimated beams in planar photonic crystals," Optics Express, Vol. 12, 1823-1831, 2004.
    doi:10.1364/OPEX.12.001823

    22. Chen, C., A. Sharkawy, D. Pustai, S. Shi, and D. Prather, "Optimizing bending efficiency of self-collimated beams in non-channel planar photonic crystal waveguides," Optics Express, Vol. 11, 3153-3159, 2003.
    doi:10.1364/OE.11.003153

    23. Prather, D. W., S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, "Self-collimation in photonic crystal structures: A new paradigm for applications and device development," Journal of Physics D: Applied Physics, Vol. 40, 2635, 2007.
    doi:10.1088/0022-3727/40/9/S04

    24. Parazzoli, C., R. Greegor, K. Li, B. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett., Vol. 90, 107401, 2003.
    doi:10.1103/PhysRevLett.90.107401

    25. Shelby, R., D. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
    doi:10.1126/science.1058847

    26. Monat, C., P. Domachuk, and B. Eggleton, "Integrated optofluidics: A new river of light," Nature Photonics, Vol. 1, 106-114, 2007.
    doi:10.1038/nphoton.2006.96

    27. Ebnali-Heidari, M., C. Grillet, C. Monat, and B. Eggleton, "Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration," Optics Express, Vol. 17, 1628-1635, 2009.
    doi:10.1364/OE.17.001628

    28. Hosseinibalam, F., S. Hassanzadeh, A. Ebnali-Heidari, and C. Karnutsch, "Design of an optofluidic biosensor using the slow-light effect in photonic crystal structures," Applied Optics, Vol. 51, 568-576, 2012.
    doi:10.1364/AO.51.000568

    29. Bakhshi, S., M. K. Moravvej-Farshi, M. Ebnali-Heidari, and , "Proposal for enhancing the transmission efficiency of photonic crystal 60o waveguide bends by means of optofluidic infiltration," Applied Optics, Vol. 50, 4048-4053, 2011.
    doi:10.1364/AO.50.004048

    30. Bitarafan, M., et al., "Proposal for postfabrication fine-tuning of three-port photonic crystal channel drop filters by means of optofluidic infiltration," Applied Optics, Vol. 50, 2622-2627, 2011.
    doi:10.1364/AO.50.002622

    31. Du, F., et al., "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett., Vol. 85, 2181, 2004.
    doi:10.1063/1.1796533

    32. Mendoza-Suarez, A., H. Perez-Aguilar, and F. Villa-Villa, "Optical response of a perfect conductor waveguide that behaves as a photonic crystal," Progress In Electromagnetics Research, Vol. 121, 433, 2011.
    doi:10.2528/PIER11082405

    33. Erickson, D., T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Optics Letters, Vol. 31, 59-61, 2006.
    doi:10.1364/OL.31.000059

    34. Intonti, F., S. Vignolini, V. Turck, M. Colocci, B. L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett., Vol. 89, 2111171-2111173, 2006.

    35. Smith, C. L. C., D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D, Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Phys. Lett., Vol. 91, No. 1--3, 121103, 2007.