Vol. 25

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-08-22

Giant Optical Activity and Negative Refractive Index Using Complementary U-Shaped Structure Assembly

By Yongzhi Cheng, Yan Nie, and Rong Zhou Gong
Progress In Electromagnetics Research M, Vol. 25, 239-253, 2012
doi:10.2528/PIERM12070403

Abstract

In this paper, a chiral metamaterial (CMM) with complementary U-shaped structure assembly is proposed. The microwave experimental and simulated results of the proposed complementary structure exhibit giant optical activity. The experimental results are in good agreement with the numerical ones. The retrieval results reveal that negative refractive indices for right-handed and left-handed circularly polarized waves could be easily realized due to strong chirality. The mechanism of the chiral behaviors of resonance frequencies will be illustrated by simulated current distributions. Further, the complementary U-shaped structure assembly also exhibits stronger circular dichroism, giant optical activity, and negative index at near-infrared region by simulations.

Citation


Yongzhi Cheng, Yan Nie, and Rong Zhou Gong, "Giant Optical Activity and Negative Refractive Index Using Complementary U-Shaped Structure Assembly," Progress In Electromagnetics Research M, Vol. 25, 239-253, 2012.
doi:10.2528/PIERM12070403
http://jpier.org/PIERM/pier.php?paper=12070403

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Smith D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    3. Shelby , R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
    doi:10.1126/science.1058847

    4. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    5. Schurig, , D., , J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
    doi:10.1126/science.1133628

    6. Ziolkowski, R. W. and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans. on Antenn. and Propag., Vol. 54, No. 7, 2113-2130, 2006.
    doi:10.1109/TAP.2006.877179

    7. Mirza, I. O., S. Shi, and D. W. Prather, "Phase modulation using dual split ring resonators," Opt. Express, Vol. 17, No. 7, 5089-5097, 2009.
    doi:10.1364/OE.17.005089

    8. Zhang, S., W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express, Vol. 13, No. 13, 4922-4930, 2005.
    doi:10.1364/OPEX.13.004922

    9. Shalaev, V. M., W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett., Vol. 30, No. 24, 3356-3358, 2005.
    doi:10.1364/OL.30.003356

    10. Paul, O., C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, "Negative index bulk metamaterial at terahertz frequencies," Opt. Express, Vol. 16, No. 9, 6736-6744, 2008.
    doi:10.1364/OE.16.006736

    11. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003.
    doi:10.1163/156939303322226356

    12. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, No. 5700, 1353-1355, 2004.
    doi:10.1126/science.1104467

    13. Rogacheva, A. V. , V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "\Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Phys. Rev. Lett., Vol. 97, No. 17, 2006.
    doi:10.1103/PhysRevLett.97.177401

    14. Liu, H., D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures," Phys. Rev. B, Vol. 76, No. 7, 073101(4), 2007.
    doi:10.1103/PhysRevB.76.073101

    15. Li, , T. Q., H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, "Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial," Appl. Phys. Lett., Vol. 92, No. 13, 131111(3), 2008.

    16. Decker, , M., S. Linden, M. Wegener, "Coupling effects in low-symmetry planar split-ring resonator arrays," Opt. Lett., Vol. 34, No. 10, 1579-1581, 2009.
    doi:10.1364/OL.34.001579

    17. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, No. 3, 033108, 2009.
    doi:10.1103/PhysRevB.80.033108

    18. Singh, R. J., E. Plum, W. L. Zhang, and N. I. Zheludev, "Highly tunable optical activity in planar achiral terahertz metamaterials," Opt. Express, Vol. 18, No. 13, 13425-13430, 2010.
    doi:10.1364/OE.18.013425

    19. Wang, B. , T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Chiral metamaterials: Simulations and experiments," J. Opt. A: Pure Appl. Opt., Vol. 11, 114003(1), 2009.

    20. Zhang, S., Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, "Negative refractive index in chiral metamaterials," Phys. Rev. Lett., Vol. 102, No. 2, 023901(4), 2009.
    doi:10.1103/PhysRevLett.102.023901

    21. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, No. 3, 035407(6), 2009.
    doi:10.1103/PhysRevB.79.035407

    22. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, No. 12, 121104(4), 2009.
    doi:10.1103/PhysRevB.79.121104

    23. Dong, J., J. Zhou, T. Koschny, and C. Soukoulis, "Bi-layer crosschiral structure with strong optical activity and negative refractiveindex," Opt. Express, Vol. 17, No. 16, 14172-14179, 2009.
    doi:10.1364/OE.17.014172

    24. Li, Z., R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four ‘’U" split ring resonators," Appl. Phys. Lett., Vol. 97, No. 8, 081901(3), 2010.

    25. Decker, M., R. Z., C. M. Soukoulis, S. Linden, and M. Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Opt. Lett., Vol. 35, No. 10, 1593, 2010.
    doi:10.1364/OL.35.001593

    26. Zhao, R. , L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, "Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index," Phys. Rev. B, Vol. 83, No. 3, 035105(4), 2011.

    27. Li, Z., K. B. Alici, E. Colak, and E. Ozbay, "Complementary chiral metamaterials with giant optical activity and negative refractive index," Appl. Phys. Lett., Vol. 98, 161907, 2011.
    doi:10.1063/1.3574909

    28. Li, J., F. Q. Yang, and J. F. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

    29. Wu, Z., J. Zhu, H. Lu, and B Zeng, "A double-layer metamaterial with negative refractive index originating from chiral configuration," Microw. Opt. Technol. Lett., Vol. 53, No. 1, 163-166, 2011.
    doi:10.1002/mop.25645

    30. Zarifi, D., M. Soleimani, and V. Nayyeri, "A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2--3, 251-263, 2012.
    doi:10.1163/156939312800030767

    31. Li, Z., K. B. Alici, H. Caglayan, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Composite chiral metamaterials with negative refractive index and high values of the figure of merit," Opt. Express, Vol. 20, No. 16, 6146-6156, 2012.
    doi:10.1364/OE.20.006146

    32. Zhao, R., T. Koschny, E. N. Economou, and C. M. Soukoulis, "Comparison of chiral metamaterial designs for repulsive Casimir force," Phys. Rev. B, Vol. 81, No. 32, 235126, 2010.
    doi:10.1103/PhysRevB.81.235126

    33. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, 1999.

    34. Falcone, F. , T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. R. Marques, F. F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett., Vol. 3, No. 19, 197401(4), 2004.

    35. Zentgraf , T., T. P. Meyrath, A. Seidel, S. Kaiser, and H. Giessen, "Babinet's principle for optical frequency metamaterials and nanoantennas," Phys. Rev. B, Vol. 76, No. 3, 033407(4), 2007.
    doi:10.1103/PhysRevB.76.033407

    36. Liu, N., S. Kaiser, and H. Giessen, "Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules," Adv. Mater., Vol. 20, No. 23, 4521-4525, Deerfield Beach, Florida, 2008.
    doi:10.1002/adma.200801917

    37. Xiong, X. , W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, "Construction of a chiral metamaterial with a U-shaped resonator assembly," Phys. Rev. B, Vol. 81, No. 7, 075119, 2010.
    doi:10.1103/PhysRevB.81.075119

    38. Zhao, R., T. Koschny, and C. M. Soukoulis, "Chiral metama-terials: Retrieval of the effective parameters with and without substrate," Opt. Express, Vol. 8, No. 14, 14553-14567, 2010.
    doi:10.1364/OE.18.014553

    39. Kwon, D., D. H. Werner, A. V. Kildishev, V. M. Shalaev, and , "Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design," Opt. Express, Vol. 16, No. 16, 11822-11829, 2008.
    doi:10.1364/OE.16.011822

    40. Depine, R. A. and A. A. Lakhtakia, "New condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity," Microw. Opt. Technol. Lett., Vol. 41, No. 4, 315-316, 2004.
    doi:10.1002/mop.20127