Vol. 25

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-08-01

On Relativistic Polarization of a Rotating Magnetized Medium

By Alexander L. Kholmetskii, Oleg V. Missevitch, and Tolga Yarman
Progress In Electromagnetics Research M, Vol. 25, 157-172, 2012
doi:10.2528/PIERM12062003

Abstract

We consider the relativistic polarization of a rotating magnetized medium in the framework of the approach suggested earlier (A L Kholmetskii and T Yarman 2010 Eur. J. Phys. 31 1233), which is based on the charge conservation law and relativistic generalization of the first Kirchhoff law to a closed moving circuit carrying steady current. We show that the polarization of a magnet brought to a rotation differs, in general, from the relativistic polarization of a translationary moving magnet, and on this way we give one more explanation to the familiar Wilson & Wilson experiment, with the explicit demonstration of the implementation of the charge conservation law.

Citation


Alexander L. Kholmetskii, Oleg V. Missevitch, and Tolga Yarman, "On Relativistic Polarization of a Rotating Magnetized Medium," Progress In Electromagnetics Research M, Vol. 25, 157-172, 2012.
doi:10.2528/PIERM12062003
http://jpier.org/PIERM/pier.php?paper=12062003

References


    1. Wilson, M. and H. A. Wilson, "On the electric effect of a rotating insulator in a magnetic field," Proc. R. Soc. London, Vol. A89, 99, 1913.

    2. Pellegrini, G. N. and A. R. Swift, "Maxwell's equations in a rotating medium: Is there a problem?," Am. J. Phys., Vol. 63, 694, 1995.
    doi:10.1119/1.17839

    3. Panofsky, W. K. H. and M. Phillips, Classical Electricity and Magnetism, 2nd Ed., Wiley, New York, 1962.

    4. Burrows, L. B., G. N. Pellegrini, and A. R. Swift, "Comment on `Maxwell's equations in a rotating medium: Is there a problem?'," Am. J. Phys., Vol. 65, 929, 1997.
    doi:10.1119/1.18689

    5. Weber, T. A., "Measurement on a rotating frame in relativity, and the Wilson and Wilson experiment," Am. J. Phys., Vol. 65, 946, 1997.
    doi:10.1119/1.18696

    6. Ridgely, C. T., "Applying relativistic electrodynamics to a rotating material medium," Am. J. Phys., Vol. 66, 114, 1998.
    doi:10.1119/1.18828

    7. Hertzberg, J. B., et al., "Measurement of the relativistic potential difference across a rotating magnetic dielectric cylinder," Am. J. Phys., Vol. 69, 648, 1997.
    doi:10.1119/1.1362695

    8. Kholmetskii, A. L. and T. Yarman, "Various paths to fundamental physical laws: relativistic polarization of a moving magnetic dipole," Eur. J. Phys., Vol. 31, 1233, 2010.
    doi:10.1088/0143-0807/31/5/022

    9. Feynman, R. P., R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 2, Addison-Wesley, Reading, Mass., 1964.

    10. Blackford, B. L., "Electric field of a slowly moving rectangular current loop: A microscopic approach," Am. J. Phys., Vol. 62, 1005, 1994.
    doi:10.1119/1.17697

    11. Rosser, W. G. V., An Introduction to the Theory of Relativity, Butterworths, London, 1964.

    12. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, New York, 1998.

    13. Pellegrini, G. N., Private Correspondence, 2005.