Vol. 27
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-11-24
A Novel Field Scattering Formulation for Polarimetric Synthetic Aperture Radar: 3D Scattering and Stokes Vectors
By
Progress In Electromagnetics Research M, Vol. 27, 129-150, 2012
Abstract
Conventional Far-field decomposition of the scattered electromagnetic (EM) field in the [EH] plane in terms of the horizontal and vertical components (i.e., h, v), introduces ambiguity for multi-static, multi-platform and/or scene-centric polarimetric synthetic aperture radar (SAR) image exploitation. This is due to the fact that a 2-dimensional (2D) vector field can not constitute a complete space capable of modeling 3-dimensional (3D) field transformations. To address this, extension of the Stokes vector, target scattering vectors and coherency parameters' analytic descriptions to 3D is explored and presented. The results are also applicable to compact polarimetry (CP) where mathematically consistent 3D Stokes parameters can be defined.
Citation
Ramin Sabry, "A Novel Field Scattering Formulation for Polarimetric Synthetic Aperture Radar: 3D Scattering and Stokes Vectors," Progress In Electromagnetics Research M, Vol. 27, 129-150, 2012.
doi:10.2528/PIERM12061910
References

1. Cloude, S. R. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Trans. Geosci. Remote Sens., Vol. 34, No. 2, 498-518, Mar. 1996.
doi:10.1109/36.485127

2. Cloude, S. R. and E. Pottier, "An entropy based classification scheme for land applications of polarimetric SARs," EEE Trans. Geosci. Remote Sens., Vol. 35, No. 1, 68-78, Jan. 1997.
doi:10.1109/36.551935

3. Lee, J. S., M. R. Grunes, T. L. Ainsworth, L. Du, D. L. Schuler, and S. R. Cloude, "Unsupervised classification of polarimetric SAR images by applying target decomposition and complex Wishart distribution," EEE Trans. Geosci. Remote Sens., Vol. 37, No. 5, 2249-2258, Sep. 1999.
doi:10.1109/36.789621

4. Pottier, E. and J. S. Lee, "Application of the H/A/α polarimetric decomposition theorem for unsupervised classi¯cation of fully polarimetric SAR data based on the Wishart distribution," Proc. CEOS Workshop, 335-340, Toulouse, France, Oct. 26-29, 1999.

5. Cameron, W. L., N. Youssef, and L. K. Leung, "Simulated polarimetric signatures of primitive geometrical shapes," IEEE Trans. Geosci. Remote Sens., Vol. 34, No. 3, 793-803, May 1996.
doi:10.1109/36.499784

6. Cameron, W. L. and H. Rais, "Conservative polarimetric scatterers and their role in incorrect extensions of the Cameron decomposition," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 12, 3506-3516, Dec. 2006.
doi:10.1109/TGRS.2006.879115

7. Cameron, W. L. and H. Rais, "Polarization symmetric scatterer metric space," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 4, 1097-1107, Apr. 2009.
doi:10.1109/TGRS.2008.2007962

8. Touzi, R. and F. Charbonneau, "Characterization of target symmetric scattering using polarimetric SARs," IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 11, 2507-2516, Nov. 2002.
doi:10.1109/TGRS.2002.805070

9. Touzi, R., "Target scattering decomposition in terms of roll-invariant target parameters," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 1, 73-84, Jan. 2007.
doi:10.1109/TGRS.2006.886176

10. Touzi, R., A. Deschamps, and G. Rother, "Phase of target scattering for wetland characterization using polarimetric C-band SAR," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 9, 3241-3261, Sep. 2009.
doi:10.1109/TGRS.2009.2018626

11. Vyplavin, P. I., K. A. Lukin, and N. N. Kolchigin, "Imaging with a noise SAR in the near-filed of the source," Telecommunications and Radio Engineering, Vol. 66, No. 17, 1521-1531, 2007.
doi:10.1615/TelecomRadEng.v66.i17.10

12. Cloude, S. R., "Lie groups in electromagnetic wave propagation and scattering," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 7, 947-974, 1992.

13. Schwinger, J., Classical Electrodynamics, Perseous Books, MA, 1998.

14. Tai, C. T., Generalized Vector and Dyadic Analysis, IEEE Press, 1992.

15. Raney, R. K., "Hybrid-polarity SAR architecture," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, 3397-3404, Nov. 2007.
doi:10.1109/TGRS.2007.895883

16. Raney, R. K., "Dual-polarized SAR and Stokes parameters," IEEE Geosci. Remote Sens. Lett., Vol. 3, No. 3, 317-319, Jul. 2006.
doi:10.1109/LGRS.2006.871746

17. Souyris, J.-C. and S. Mingot, "Polarimetry based on one transmitting and two receiving polarizations: The pi/4 mode," Proc. IGARSS, 629-631, Toronto, ON, Canada, Jun. 24-28, 2002.

18. Souyris, , J.-C., P. Imbo, R. Fjortoft, S. Mingot, and J.-S. Lee, "Compact polarimetry based on symmetry properties of geophysical media: The π/4 mode," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 3, 634-646, Mar. 2005.
doi:10.1109/TGRS.2004.842486

19. Collin, R. E., Antennas and Radiowave Propagation, McGraw-Hill, 1985.

20. Bell, D. C. and R. M. Naryanan, "Theoretical aspects of radar imaging using stohastic waveforms," IEEE Trans. on Signal Processing,, Vol. 49, No. 2, 394-400, 2001.
doi:10.1109/78.902122

21. Theron, I. P., E. K. Walton, and S. Gunawan, "Compact range radar cross-section measurements using a noise radar," IEEE Trans. Antennas Propagat., Vol. 46, 1285-1288, 1998.
doi:10.1109/8.719971

22. Jakowatz, C. V., et al. "Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach," Kluwer, 1996.