A time-dependent nonlinear theory for complex cavity gyrotron is presented in this paper. The theory includes generalized telegrapher's equations and electron motion equations, which are deduced in detail. A calculation code for the self-consistent nonlinear beam-wave interaction is developed based on the presented theory. Using the code, a 94 GHz complex cavity gyrotron operating in TE021-TE031 modes is thoroughly studied. Numerical results show that an output power of 180 kW, about 36% efficiency is achieved with a 50 kV, 10 A electron beam at a focused magnetic field of 1.78 T and a beam velocity ratio of 1.65. The results from MAGIC simulation are also given and an output power of 192 kW, 38.4% efficiency is obtained. This tells the agreement with these two simulation codes.
2. Chu, K. R., "The electron cyclotron maser," Reviews of Modern Physics, Vol. 76, No. 2, 489-540, 2004.
doi:10.1103/RevModPhys.76.489
3. Pavelyev, V. G. and S. E. Tsimring, "Open resonator. Inventor's certificate 616664," Byull. Izobret., Vol. 17, 240, USSR, 1979.
4. Gaponov, A. V., V. A. Flyagin, A. L. Goldenberg, G. S. Nusi- novich, S. E. Tsimring, V. G. Usov, and S. N. Vlasov, "Power millimeter-wave gyrotrons," Int. J. Electronics, Vol. 51, No. 4, 277-302, 1981.
doi:10.1080/00207218108901338
5. Carmel, Y., K. R. Chu, M. Read, A. K. Ganguly, and D. Dialetis, "Realization of a stable and highly effcient gyrotron for controlled fusion research," Physical Review Letters, Vol. 50, No. 2, 112-116, 1983.
doi:10.1103/PhysRevLett.50.112
6. Pavelyev, V. G., S. E. Tsimring, and V. E. Zapevalov, "Coupled cavities with mode conversion in gyrotrons," Int. J. Electronics, Vol. 63, No. 3, 379-391, 1987.
doi:10.1080/00207218708939142
7. Dumbrajs, O. and B. Jodicke, "Mode competition in a complex cavityfor gyrotrons," International Conference on Infrared and Millimeter Waves, 198-199, 1987.
8. Niu, X.-J., L. Wang, and H.-F. Li, "Experimental investigation of 94 GHz second-harmonic gyrotrons," IEEE International Vacuum Electronics Conference (IVEC), 485-486, 2009.
9. Barker, R. J. and E. Schamiloglu, High-power Microwave Sources and Technologies, IEEE, Piscataway, NJ, 2001.
doi:10.1109/9780470544877
10. Goplen, B., L. Ludeking, D. Smithe, and G. Warren, "User configurable MAGIC code for electromagnetic PIC calculations," Comput. Phys. Commun., Vol. 87, No. 1-2, 54-86, 1995.
doi:10.1016/0010-4655(95)00010-D
11. Fliflet, A. W. and W. M. Manheimer, "Nonlinear theory of phase-locking gyrotron oscillators driven by an external signal," Physical Review A, Vol. 39, No. 7, 3432-3443, 1989.
doi:10.1103/PhysRevA.39.3432
12. Fliflet, A. W., R. C. Lee, S. H. Gold, W. M. Manheimer, and E. Ott, "Time-dependent multimode simulation of gyrotron oscillators," Physical Review A, Vol. 43, No. 11, 6166-6176, 1991.
doi:10.1103/PhysRevA.43.6166
13. Nusinovich, G. S., "Linear theory of a gyrotron in weakly tapered external magnetic field," Int. J. Electronics, Vol. 64, No. 1, 127-135, 1988.
doi:10.1080/00207218808962789
14. Borie, E. and B. Jodicke, "Self-consistent theory of mode competition for gyrotrons," Int. J. Electronics, Vol. 72, No. 5-6, 721-744, 1992.
doi:10.1080/00207219208925611
15. Vlasov, A. N. and T. M. Antonsen, "Numerical solution of fields in lossy structures using MAGY," IEEE Trans. on Electron. Devices, Vol. 48, No. 1, 45-55, 2001.
doi:10.1109/16.892166
16. Fliflet, A. W., M. E. Read, K. R. Chu, and R. Seely, "A self-consistent field theory for gyrotron oscillators: Application to a low Q gyromonotron," Int. J. Electronics, Vol. 53, No. 6, 505-521, 1982.
doi:10.1080/00207218208901545
17. Levush, B., T. M. Antonsen, Jr., A. Bromborsky, W. Lou, and Y. Carmel, "Theory of relativistic backward wave oscillator with end reflections," IEEE Trans. Plasma Sci., Vol. 20, No. 3, 263-280, 1992.
doi:10.1109/27.142828
18. Guo, J. H., S. Yu, X. Li, and H. F. Li, "Study on nonlinear theory and code of beam-wave interaction for gyroklystron," J. Infrared Milli. Terahz. Waves, Vol. 32, 1382-1393, 2011.
19. Niu, X.-J., L. Wang, and H.-F. Li, "94 GHz second-harmonic gyrotron with complex cavity," IEEE International Vacuum Electronics Conference (IVEC), 469-470, 2009.
doi:10.1109/IVELEC.2009.5193589
20. Aune, P., M. Fourrier, and G. Mourier, "A method for determining oscillation area in microwave tubes," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 6, 725-742, 1994.