Vol. 25

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-07-20

Time-Dependent Nonlinear Theory and Numerical Simulation of 94 GHz Complex Cavity Gyrotron

By Jun Jian Ma, Xiao Fang Zhu, Xiao Lin Jin, Yu Lu Hu, Zhong-Hai Yang, Jian-Qing Li, and Bin Li
Progress In Electromagnetics Research M, Vol. 25, 141-155, 2012
doi:10.2528/PIERM12060104

Abstract

A time-dependent nonlinear theory for complex cavity gyrotron is presented in this paper. The theory includes generalized telegrapher's equations and electron motion equations, which are deduced in detail. A calculation code for the self-consistent nonlinear beam-wave interaction is developed based on the presented theory. Using the code, a 94 GHz complex cavity gyrotron operating in TE021-TE031 modes is thoroughly studied. Numerical results show that an output power of 180 kW, about 36% efficiency is achieved with a 50 kV, 10 A electron beam at a focused magnetic field of 1.78 T and a beam velocity ratio of 1.65. The results from MAGIC simulation are also given and an output power of 192 kW, 38.4% efficiency is obtained. This tells the agreement with these two simulation codes.

Citation


Jun Jian Ma, Xiao Fang Zhu, Xiao Lin Jin, Yu Lu Hu, Zhong-Hai Yang, Jian-Qing Li, and Bin Li, "Time-Dependent Nonlinear Theory and Numerical Simulation of 94 GHz Complex Cavity Gyrotron," Progress In Electromagnetics Research M, Vol. 25, 141-155, 2012.
doi:10.2528/PIERM12060104
http://jpier.org/PIERM/pier.php?paper=12060104

References


    1. Flyagin, V. A., A. V. Gaponov, M. I. Petelin, and V. K. yulpatov, "The gyrotron," IEEE Trans. on Microwave Theory and Techniques, Vol. 25, No. 6, 514-521, 1977.
    doi:10.1109/TMTT.1977.1129149

    2. Chu, K. R., "The electron cyclotron maser," Reviews of Modern Physics, Vol. 76, No. 2, 489-540, 2004.
    doi:10.1103/RevModPhys.76.489

    3. Pavelyev, V. G. and S. E. Tsimring, "Open resonator. Inventor's certificate 616664," Byull. Izobret., Vol. 17, 240, USSR, 1979.

    4. Gaponov, A. V., V. A. Flyagin, A. L. Goldenberg, G. S. Nusi- novich, S. E. Tsimring, V. G. Usov, and S. N. Vlasov, "Power millimeter-wave gyrotrons," Int. J. Electronics, Vol. 51, No. 4, 277-302, 1981.
    doi:10.1080/00207218108901338

    5. Carmel, Y., K. R. Chu, M. Read, A. K. Ganguly, and D. Dialetis, "Realization of a stable and highly effcient gyrotron for controlled fusion research," Physical Review Letters, Vol. 50, No. 2, 112-116, 1983.
    doi:10.1103/PhysRevLett.50.112

    6. Pavelyev, V. G., S. E. Tsimring, and V. E. Zapevalov, "Coupled cavities with mode conversion in gyrotrons," Int. J. Electronics, Vol. 63, No. 3, 379-391, 1987.
    doi:10.1080/00207218708939142

    7. Dumbrajs, O. and B. Jodicke, "Mode competition in a complex cavityfor gyrotrons," International Conference on Infrared and Millimeter Waves, 198-199, 1987.

    8. Niu, X.-J., L. Wang, and H.-F. Li, "Experimental investigation of 94 GHz second-harmonic gyrotrons," IEEE International Vacuum Electronics Conference (IVEC), 485-486, 2009.

    9. Barker, R. J. and E. Schamiloglu, High-power Microwave Sources and Technologies, IEEE, Piscataway, NJ, 2001.
    doi:10.1109/9780470544877

    10. Goplen, B., L. Ludeking, D. Smithe, and G. Warren, "User configurable MAGIC code for electromagnetic PIC calculations," Comput. Phys. Commun., Vol. 87, No. 1-2, 54-86, 1995.
    doi:10.1016/0010-4655(95)00010-D

    11. Fliflet, A. W. and W. M. Manheimer, "Nonlinear theory of phase-locking gyrotron oscillators driven by an external signal," Physical Review A, Vol. 39, No. 7, 3432-3443, 1989.
    doi:10.1103/PhysRevA.39.3432

    12. Fliflet, A. W., R. C. Lee, S. H. Gold, W. M. Manheimer, and E. Ott, "Time-dependent multimode simulation of gyrotron oscillators," Physical Review A, Vol. 43, No. 11, 6166-6176, 1991.
    doi:10.1103/PhysRevA.43.6166

    13. Nusinovich, G. S., "Linear theory of a gyrotron in weakly tapered external magnetic field," Int. J. Electronics, Vol. 64, No. 1, 127-135, 1988.
    doi:10.1080/00207218808962789

    14. Borie, E. and B. Jodicke, "Self-consistent theory of mode competition for gyrotrons," Int. J. Electronics, Vol. 72, No. 5-6, 721-744, 1992.
    doi:10.1080/00207219208925611

    15. Vlasov, A. N. and T. M. Antonsen, "Numerical solution of fields in lossy structures using MAGY," IEEE Trans. on Electron. Devices, Vol. 48, No. 1, 45-55, 2001.
    doi:10.1109/16.892166

    16. Fliflet, A. W., M. E. Read, K. R. Chu, and R. Seely, "A self-consistent field theory for gyrotron oscillators: Application to a low Q gyromonotron," Int. J. Electronics, Vol. 53, No. 6, 505-521, 1982.
    doi:10.1080/00207218208901545

    17. Levush, B., T. M. Antonsen, Jr., A. Bromborsky, W. Lou, and Y. Carmel, "Theory of relativistic backward wave oscillator with end reflections," IEEE Trans. Plasma Sci., Vol. 20, No. 3, 263-280, 1992.
    doi:10.1109/27.142828

    18. Guo, J. H., S. Yu, X. Li, and H. F. Li, "Study on nonlinear theory and code of beam-wave interaction for gyroklystron," J. Infrared Milli. Terahz. Waves, Vol. 32, 1382-1393, 2011.

    19. Niu, X.-J., L. Wang, and H.-F. Li, "94 GHz second-harmonic gyrotron with complex cavity," IEEE International Vacuum Electronics Conference (IVEC), 469-470, 2009.
    doi:10.1109/IVELEC.2009.5193589

    20. Aune, P., M. Fourrier, and G. Mourier, "A method for determining oscillation area in microwave tubes," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 6, 725-742, 1994.