Vol. 24
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-06-11
High-q Reflection Notch Method for mm Wave Measurements of Large Dielectric Losses Using a Stack Resonator: Analysis and Simulations
By
Progress In Electromagnetics Research M, Vol. 24, 265-279, 2012
Abstract
A high-Q reflection notch method for measuring large dielectric losses in absorbing materials when using a stack resonator, which is a one-dimensional analogue of a capillary-in-a-waveguide technique, has been proposed. A detailed explanation of the effects that lay the basis of the method has been presented. The method is particularly accurate and sensitive for highly absorbing materials when other techniques are inadequate. The method can be used for dielectric spectroscopy of a broad range of liquid and solid materials, with applications in chemical, pharmaceutical and food industry, biomedical sciences, agriculture etc, in those frequency bands of infrared, millimeter wave and, especially, THz waves where dielectric losses are significant.
Citation
Vladimir Borisovich Yurchenko, "High-q Reflection Notch Method for mm Wave Measurements of Large Dielectric Losses Using a Stack Resonator: Analysis and Simulations," Progress In Electromagnetics Research M, Vol. 24, 265-279, 2012.
doi:10.2528/PIERM12042902
References

1. Clarke, R. N., A. P. Gregory, D. Cannell, M. Patrick, S. Wylie, I. Youngs, and G. Hill, A Guide to the Characterisation of Dielectric Materials at RF and Microwave Frequencies, NPL, Teddington, 2003.

2. Baker-Jarvis, J., M. D. Janezic, B. F. Riddle, R. T. Johnk, P. Kabos, C. L. Holloway, R. G. Geyer, and C. A. Grosvenor, Measuring the Permittivity and Permiability of Lossy Materials: Solids, Liquids, Metals, Building Materials, and Negative-Index Materials, NIST, Boulder, CO, 2005.

3. Afsar, M. N., N. Suwanvisan, and Y. Wang, "Permittivity measurement of low and high loss liquids in the frequency range of 8 to 40 GHz using waveguide transmission line technique," Microw. Opt. Tech. Lett., Vol. 48, No. 2, 275-281, Feb. 2006.

4. Krupka, J., "Frequency domain complex permittivity measurements at microwave frequencies," Meas. Sci. Technol., Vol. 17, No. 6, R55-R70, Jun. 2006.

5. Sheen, J., "Comparisons of microwave dielectric property measurements by transmission/reflection techniques and resonance techniques," Meas. Sci. Technol., Vol. 20, No. 4, 042001, 2009.

6. Egorov, V. N., "Resonance methods for microwave studies of dielectrics (review)," Instrum. Exp. Tech., Vol. 50, No. 2, 143-175, Mar. 2007.

7. Akay, M. F., Y. V. Prokopenko, and S. Kharkovsky, "Resonance characteristics of whispering gallery modes in parallel-plates-type cylindrical dielectric resonators," Microw. Opt. Tech. Lett., Vol. 40, No. 2, 96-101, Jan. 2004.

8. Krupnov, A. F., V. N. Markov, G. Y. Golubyatnikov, I. I. Leonov, Y. N. Konoplev, and V. V. Parshin, "Ultra-low absorption measurement in dielectrics in millimeter- and submillimeter-wave range," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 3, 284-289, Mar. 1999.

9. Addamo, G., G. Virone, D. Vaccaneo, R. Tascone, O. A. Peverini, and R. Orta, "An adaptive cavity setup for accurate measurements of complex dielectric permittivity," Progress In Electromagnetics Research, Vol. 105, 141-155, 2010.

10. Chen, Q., K.-M. Huang, X. Yang, M. Luo, and H. Zhu, "An artificial nerve network realization in the measurement of material permittivity," Progress In Electromagnetics Research, Vol. 116, 347-361, 2011.

11. Matvejev, V., C. de Tandt, W. Ranson, J. Stiens, R. Vounckx, and D. Mangelings, "Integrated waveguide structure for highly sensitive THz spectroscopy of nano-liter liquids in capillary tubes," Progress In Electromagnetics Research, Vol. 121, 89-101, 2011.

12. Belyakov, E. V., "High-quality resonance in a waveguide with a highly-absorbing dielectric," Elektronnaya Tekhnika. Ser. Elektronika SVCh (Electronic Engineering), Vol. 393, No. 9, 3-5, 1986.

13. Bakaushina, G. F., E. V. Belyakov, N. B. Zinov'eva, and A. M. Khrapko, "UHF-analyzer of concentration of liquid pharmaceutical substances," Elektronnaya Tekhnika. Ser. Elektronika SVCh (Electronic Engineering), Vol. 393, No. 9, 54-56, 1986.

14. Belyakov, E. V., "A resonant UHF dielcometer for absorbing liquids," Elektronnaya Tekhnika. Ser. Elektronika SVCh (Electronic Engineering), Vol. 401, No. 7, 51-53, 1987.

15. Belyakov, E. V., "Tunable UHF-resonator for measuring absorbing liquids," Elektronnaya Tekhnika. Ser. Elektronika SVCh (Electronic Engineering), Vol. 424, No. 10, 59-61, 1989.

16. Kirichenko, A. Y., V. I. Lutsenko, Y. F. Filippov, Y. V. Prokopenko, and E. V. Krivenko, "Temperature-dielectric spectroscopy of aqueous solutions using the method of capillary-waveguide resonance," Izv. VUZov. Radiofizika, Vol. 51, No. 8, 711-716, 2008.

17. Bludov, Y. V., "Propagation of the H10 mode in a rectangular waveguide with a dielectric discontinuity," Tech. Phys., Vol. 50, No. 8, 1062-1068, 2005.

18. Malyshenko, Y. I., V. L. Kostina, and A. N. Roenko, "A model of water dielectric permittivity in microwave and terahertz ranges," Ukr. J. Phys., Vol. 52, No. 2, 155-161, 2007.

19. Furashov, N. I., V. E. Dudin, and B. A. Sverdlov, "Study of the dielectric properties of water in the frequency band 75-120 GHz," Izv. VUZov. Radiofizika, Vol. 49, No. 6, 489-501, 2006.

20. Born, M. and E. Wolf, Principles of Optics, 7th edition, Cambridge, 2003.