Vol. 25
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-06-13
Controlling the Optical Bistability in a Kobrak-Rice 5-Level Quantum System
By
Progress In Electromagnetics Research M, Vol. 25, 1-11, 2012
Abstract
ΛOptical bistability (OB) behavior of a Kobrak-Rice 5-level quantum system is investigated. It is demonstrated that the OB of the system can be controlled by either the intensity or relative phase of driving fields. We have also shown that by applying an incoherent pumping field, the OB behavior of the system changes and the considerable output is obtained for zero input in the gain region induced by incoherent pumping field.
Citation
Lida Ebrahimi Zohravi, Rasoul Doostkam, Seyede Masoumeh Mousavi, and Mohammad Mahmoudi, "Controlling the Optical Bistability in a Kobrak-Rice 5-Level Quantum System," Progress In Electromagnetics Research M, Vol. 25, 1-11, 2012.
doi:10.2528/PIERM12040801
References

1. Moon, H. S., S. K. Kim, K. Kim, C. H. Lee, and J. B. Kim, "Atomic coherence changes caused by optical pumping applied to electromagnetically induced absorption," J. Phys. B: At. Mol. Opt. Phys., Vol. 36, 3721-3729, 2003.
doi:10.1088/0953-4075/36/18/302

2. Scully, M. O., S. Y. Zhu, and A. Gavrielides, "Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing," Phys. Rev. Lett., Vol. 62, 2813-2816, 1989.
doi:10.1103/PhysRevLett.62.2813

3. Scully, M. O., "Enhancement of the index of refraction via quantum coherence," Phys. Rev. Lett., Vol. 67, 1855-1858, 1991.
doi:10.1103/PhysRevLett.67.1855

4. Boller, K. J., A. Imamoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett., Vol. 66, 2593-2596, 1991.
doi:10.1103/PhysRevLett.66.2593

5. Lugiato, L. A., "Theory of optical bistability," Progress in Optics, Vol. 21, 71-211, E. Wolf (Ed.), North-Holland, Amsterdam, 1984.

6. Gibbs, H. M. and D. Sarid, "Optical bistability: Controlling light by light," Phys. Today, Vol. 40, 71, 1987.
doi:10.1063/1.2820150

7. Harshawardhan, W. and G. S. Agarwal, "Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences," Phys. Rev. A, Vol. 53, 1812-1817, 1996.
doi:10.1103/PhysRevA.53.1812

8. Mousavi, S. M., L. Safari, M. Mahmoudi, and M. Sahrai, "Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition," J. Phys. B: At. Mol. Opt. Phys., Vol. 43, 165501-165509, 2010.
doi:10.1088/0953-4075/43/16/165501

9. Sahrai, M. and M. Memarzadeh, "Optical bistability and multi-stability via quantum interference in a four-level N-type atomic system," Jpn. J. Appl. Phys., Vol. 50, 110201-110203, 2011.
doi:10.1143/JJAP.50.110201

10. Mlynek, J., F. Mitschke, R. Deserno, and W. Lange, "Optical bistability from three-level atoms with the use of a coherent nonlinear mechanism," Phys. Rev. A, Vol. 29, 1297-1303, 1984.
doi:10.1103/PhysRevA.29.1297

11. Wang, H., D. J. Goorskey, and M. Xiao, "Bistability and instability of three-level atoms inside an optical cavity," Phys. Rev. A, Vol. 65, 011801, 2001.
doi:10.1103/PhysRevA.65.011801

12. Joshi, A., A. Brown, H. Wang, and M. Xiao, "Controlling optical bistability in a three-level atomic system," Phys. Rev. A, Vol. 67, 041801, 2003.
doi:10.1103/PhysRevA.67.041801

13. Li, J. H., X. Y. Lv, J. M. Luo, and Q. J. Huang, "Optical bistability and multistability via atomic coherence in an N-type atomic medium," Phys. Rev. A, Vol. 74, 035801, 2006.
doi:10.1103/PhysRevA.74.035801

14. Mahmoudi, M., S. M. Mousavi, and M. Sahrai, "Controlling theoptical bistability via interacting dark-state resonances," EPJD, Vol. 57, 241-246, 2010.
doi:10.1140/epjd/e2010-00020-1

15. Cheng, D. C., C. P. Liu, and S. Q. Gong, "Optical bistability via amplitude and phase control of a microwave field," Opt. Commun., Vol. 263, 111-115, 2006.
doi:10.1016/j.optcom.2006.01.024

16. Lu, X. Y., J. H. Li, and J. B. Liu, "Controllable optical bistability and multistability in a four-level atomic system with closed-loop configuration," Chin. Phys. Lett., Vol. 24, 108-111, 2007.
doi:10.1088/0256-307X/24/1/030

17. Mahmoudi, M., M. Sahrai, and M. A. Allahyari, "Amplitude and phase control of absorption and dispersion in a Kobrak-Rice 5-level quantum system," Progress In Electromagnetic Research B, Vol. 24, 333-350, 2010.
doi:10.2528/PIERB10061405

18. Kobrak, M. N. and S. A. Rice, "An extension of stimulated raman selective photochemistry via adiabatic passage: Adiabatic passage for degenerate final states," Phys. Rev. A, Vol. 57, 2885-2894, 1998.
doi:10.1103/PhysRevA.57.2885

19. Gong, J. and S. A. Rice, "Measurement-assisted coherent control," J. Chem. Phys., Vol. 120, 9984-9988, 2004.
doi:10.1063/1.1735644

20. Sugawara, M., "Measurement-assisted quantum dynamics control of 5-level system using intense CW-laser fields," Chem. Phys. Lett., Vol. 428, 457-460, 2006.
doi:10.1016/j.cplett.2006.07.069

21. Scully, M. O. and M. S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge, 1997.

22. Lukin, M. D., S. F. Yelin, M. Fleishhauer, and M. O. Scully, "Quantum interference effects induced by interacting dark resonances," Phys. Rev. A, Vol. 60, 3225-3228, 1999.
doi:10.1103/PhysRevA.60.3225

23. Korsunsky, E. A. and D. V. Kosachiov, "Phase-dependent nonlinear optics with double-Λ atoms," Phys. Rev. A, Vol. 60, 4996-5009, 1999.
doi:10.1103/PhysRevA.60.4996

24. Morigi, G., S. Franke-Arnold, and G. L. Oppo, "Phase-dependent interaction in a four-level atomic configuration," Phys. Rev. A, Vol. 66, 053409, 2002.
doi:10.1103/PhysRevA.66.053409

25. Wang, G., X. Yan, J. H. Wu, and J. Y. Gao, "The phase dependent properties of gain and absorption in an Er3+-doped yttrium aluminum garnet crystal," Opt. Commun., Vol. 267, 118-123, 2006.
doi:10.1016/j.optcom.2006.06.002

26. Paspalakis, E., C. H. Keitel, and P. L. Knight, "Fluorescence control through multiple interference mechanisms," Phys. Rev. A, Vol. 58, 4868, 1998.
doi:10.1103/PhysRevA.58.4868

27. Mahmoudi, M. and J. Evers, "Light propagation through closed-loop atomic media beyond the multi-photon resonance condition," Phys. Rev. A, Vol. 74, 063827, 2006.
doi:10.1103/PhysRevA.74.063827

28. Zhang, Y., A. W. Brown, and M. Xiao, "Matched ultraslow propagation of high efficient four-wave mixing in a closely cycled double-ladder system," Phys. Rev. A, Vol. 74, 053813, 2006.
doi:10.1103/PhysRevA.74.053813