Vol. 22
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-12-14
Simultaneous Microwave Chirped Pulse Generation and Antenna Beam Steering
By
Progress In Electromagnetics Research M, Vol. 22, 137-148, 2012
Abstract
A new structure is suggested for simultaneous microwave chirped pulse generation and array antenna beam steering. It is based on using a multi-channel fiber Bragg grating in a photonic microwave delay-line filter. The paper presents a feasibility study of the idea, discussing the main performance parameters of both signal generation and beam steering functions. Specifically, it focuses on the effects of wavelength tuning, resolution and accuracy. The study shows that custom off-the-shelf components could be used to implement an all optical system capable of generating chirped pulses while steering the radiation pattern of a small sized antenna array. The advantages of the structure for avoiding single sideband modulation difficulties and also for the compensation of the multichannel fiber Bragg grating inaccuracies are also discussed.
Citation
Mostafa Shabani, and Mahmood Akbari, "Simultaneous Microwave Chirped Pulse Generation and Antenna Beam Steering," Progress In Electromagnetics Research M, Vol. 22, 137-148, 2012.
doi:10.2528/PIERM11090906
References

1. Minasian, R. A., "Photonic signal processing of microwave signals," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 832-846, 2006.
doi:10.1109/TMTT.2005.863060

2. Tonda-Goldstein, S., et al. "Optical signal processing in radar systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 847-853, 2006.
doi:10.1109/TMTT.2005.863059

3. Ng, W., et al. "The first demonstration of an optically steered microwave phased array antenna using true-time-delay," Journal of Lightwave Technology, Vol. 9, 1124-1131, 1991.
doi:10.1109/50.85809

4. Wu, T. E. and C. Chandler, "Optical beam forming techniques for phased array antennas," Progress In Electromagnetics Research Symposium, 694, United States, 1993.

5. Meijerink, A., et al. "Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas --- Part I: Design and performance analysis," Journal of Lightwave Technology, Vol. 28, 3-18, 2010.
doi:10.1109/JLT.2009.2029705

6. Corral, J. L., et al. "Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber grating," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 1531-1536, 1997.
doi:10.1109/22.618471

7. Yang, B., X. F. Jin, X. M. Zhang, H. Chi, and S. L. Zheng, "Photonic generation of 60 GHz millimeter-wave by frequency quadrupling based on a mode-locking SOA fiber ring laser with a low modulation depth MZM," Journal of Electromagnetic Waves and Applications,, Vol. 24, No. 13, 1773-1782, 2010.

8. Yao, J., "Photonic generation of microwave arbitrary waveforms," Optics Communications, Vol. 284, 3723-3736, 2011.
doi:10.1016/j.optcom.2011.02.069

9. Corral, J., et al. "Dispersion-induced bandwidth limitation of variable true time delay lines based on linearly chirped fibre gratings," Electronics Letters, Vol. 34, 209-211, 1998.
doi:10.1049/el:19980164

10. Smith, G., et al. "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems," Electronics Letters, Vol. 33, 74-75, 1997.
doi:10.1049/el:19970066

11. Dai, Y. and J. Yao, "Chirped microwave pulse generation using a photonic microwave delay-line filter with a quadratic phase response," IEEE Photonics Technology Letters, Vol. 21, 569-571, 2009.

12. Zeng, F. and J. Yao, "Investigation of phase-modulator-based all-optical bandpass microwave filter," Journal of Lightwave Technology, Vol. 23, 1721, 2005.
doi:10.1109/JLT.2005.844499

13. Dai, Y. and J. Yao, "Nonuniformly spaced photonic microwave delay-line filters and applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, 3279-3289, 2010.
doi:10.1109/TMTT.2010.2074570