Vol. 21

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-09-22

EM Transmission Response of Microstrip Notch Filter on Obliquely Magnetized Magneto-Dielectric Substrate in Xband Under Influence of Low Magnitude of External DC Magnetic Field

By Subasit Borah and Nidhi Saxena Bhattacharyya
Progress In Electromagnetics Research M, Vol. 21, 47-59, 2011
doi:10.2528/PIERM11080110

Abstract

A tunable microwave notch filter is developed on magneto-dielectric material having low saturation magnetization to attain low external dc magnetic field for biasing. A simple microstrip line at 10 GHz is developed on nickel ferrite/low density polyethylene nanocomposite system as substrates and its microwave transmission response is studied in X-band. Composite system is developed by dispersing nano sized nickel ferrite (~6.63 nm) in low density polyethylene to obtain a homogeneous flexible substrate. Saturation magnetization of 4% volume fraction of the composite is found to be 1.8745 emu/g. Tunability of Q value and insertion loss is studied with magnitude of external dc magnetic field and at different angles of its orientation with the axial plane. A very low field up to 250 G is sufficient to tune the selectivity. An insertion loss of ~-30 dB and Q ~ 375 at 10.2 GHz is observed. The interaction of magneto static modes with orientation of the applied dc magnetic bias with respect to rf magnetic field is discussed with couple mode theory. Good cut-off behaviour of more than 28 dB is observed at magnetic field angles from 23.52° to 34.21°. The experimental and theoretical couplings show close proximity.

Citation


Subasit Borah and Nidhi Saxena Bhattacharyya, "EM Transmission Response of Microstrip Notch Filter on Obliquely Magnetized Magneto-Dielectric Substrate in Xband Under Influence of Low Magnitude of External DC Magnetic Field," Progress In Electromagnetics Research M, Vol. 21, 47-59, 2011.
doi:10.2528/PIERM11080110
http://jpier.org/PIERM/pier.php?paper=11080110

References


    1. Miranda, F. A., G. Subramanyam, F. W. Van Keuls, R. R. Romanofsky, J. D. Warner, and C. H. Muller, "Design and development of ferroelectric tunable microwave components for Ku-and K-band satellite communication systems," IEEE Trans. on Microwave Theory and Tech., Vol. 48, No. 7, 1181-1189, Jul. 2000.
    doi:10.1109/22.853458

    2. Dionne, G. F. and D. E. Oates, "Tunability of microstrip finite resonator in the partially magnetized state," IEEE Trans. on Magn., Vol. 33, 3421-3423, Sept. 1997.
    doi:10.1109/20.617964

    3. Barbarino, S. and F. Consoli, "UWB circular slot antenna provided with an inverted-l notch filter for the 5 GHz WLAN band," Progress In Electromagnetics Research, Vol. 104, 1-13, 2010.
    doi:10.2528/PIER10040507

    4. Hsiao, P. Y. and R. M. Weng, "Compact open-loop UWB filter with notched band," Progress In Electromagnetics Research Letters, Vol. 7, 149-159, 2009.
    doi:10.2528/PIERL09022501

    5. Huang, J. Q., Q. X. Chu, and C. Y. Liu, "Compact UWB filter based on surface-coupled structure with dual notched bands," Progress In Electromagnetics Research, Vol. 106, 311-319, 2010.
    doi:10.2528/PIER10062203

    6. Huynen, I., B. Stockbroeckx, and G. Verstraeten, "An effcient energetic variational principle for modeling one-port lossy gyrotropic YIG Straight Edge Resonators," IEEE Trans. on Microwave Theory and Tech., Vol. 46, No. 7, 932-939, Jul. 1998.
    doi:10.1109/22.701445

    7. Leon, G., R. R. Boix, and F. Medina, "Effcient full-wave characterization of microstrip lines fabricated on magnetized ferrites with arbitrarily oriented bias field," Journal Electromagnetic Waves and Applications, Vol. 15, No. 2, 223-251, 2001.
    doi:10.1163/156939301X01372

    8. Morales, C., J. Dewdney, S. Pal, S. Skidmore, K. Stojak, H. Srikanth, T. Weller, and J. Wang, "Tunable magneto-dielectric polymer nanocomposites for microwave applications," IEEE Trans. on Microwave Theory and Tech., Vol. 59, No. 2, 302-310, Feb. 2011.
    doi:10.1109/TMTT.2010.2092788

    9. Gao, B., L. Qiao, J. Wang, Q. Liu, F. Li, J. Feng, and D. Xue, "Microwave absorption properties of the Ni nanowires composite," J. Phys. D: Appl. Phys., Vol. 41, No. 235005, 1-5, Nov. 2008..

    10. Yariv, A., "Coupled-mode theory for guided-wave optics," IEEE J. of Quantum Electronics, Vol. 9, No. 9, 919-933, Sept. 1973.
    doi:10.1109/JQE.1973.1077767

    11. Borah, S. and N. S. Bhattacharyya, "GCPWG technique for measurement of dielectric properties of magneto-polymer composite at microwave frequencies," Proc. IEEE, D.O.I. 10.1109/AEMC.2009.5430594, 2010.

    12. Pucel, R. A. and D. J. Masse, "Microstrip propagation on magnetic substrates - Part I: Design theory," IEEE Trans. on Microwave Theory and Tech., Vol. 20, No. 5, 304-308, May 1972.
    doi:10.1109/TMTT.1972.1127749

    13. Kaneki, T., "Analysis of linear microstrip using an arbitrary ferromagnetic substance as the substrate," Electronics Lett., Vol. 5, No. 19, 463, Sept. 1969.

    14. Collins, R. E., Field Theory of Guided Waves, McGraw Hill, 152, 1960.

    15. Pucel, R. A. and D. J. Masse, "Microstrip propagation on magnetic substrates - Part II: Experiment," IEEE Trans. on Microwave Theory and Tech., Vol. 20, 309-313, May 1972.

    16. Wheeler, H. A., "Transmission-line properties of parallel strips separated by a dielectric sheet," IEEE Trans. on Microwave Theory and Tech., Vol. 13, 172-185, 1965.
    doi:10.1109/TMTT.1965.1125962

    17. Hammerstad, E. and Φ. Jensen, "Accurate models for microstrip computer-aided design," Symposium on Microwave Theory and Tech., 407-409, Jun. 1980.

    18. Edwards, T. C. and R. P. Owens, "2-18-GHz dispersion measurements on 10-100­ Ω microstrip lines on sapphire," IEEE Trans. on Microwave Theory and Tech., Vol. 24, No. 8, 506-513, Aug. 1976.
    doi:10.1109/TMTT.1976.1128888

    19. Schneider, M. V., "Microstrip lines for microwave integrated circuits," The Bell System Technical Journal, Vol. 48, 1421-1444, May. 1969.

    20. Pramanick, P. and P. Bhartia, "An accurate description of dispersion in microstrip," Microwave Journal, 89-96, Dec. 1983.

    21. Borah, S. and N. S. Bhattacharyya, "Broadband measurement of complex permittivity of composite at microwave frequencies using scalar scattering parameters," Progress In Electromagnetics Research M, Vol. 13, 53-68, 2010.
    doi:10.2528/PIERM10051203

    22. Laverghetta, T. S., Microwave Materials and Fabrication Techniques, 3rd edition, Artech House, 2002.

    23. Salahun, E., G. Tanne, and P. Queffelec, "Enhancement of design parameters for tunable ferromagnetic composite-based microwave devices: application to filtering devices," IEEE Trans. Microw. Theory Tech.: Microwave Symposium Digest, Vol. 3, No. 6-11, 1911-1914, Jun. 2004.

    24. Deka, J. R., N. S. Bhattacharyya, and S. Bhattacharyya, "Development of low cost automated PC-based insertion loss measurement setup using a simple source and detector in X-band," IETE Tech. Rev., Vol. 22, 425, 2005.

    25. Jacobs, I. S. and C. P. Bean, "An approach to elongated fine-particle magnets," Phys. Rev., Vol. 100, No. 4, 1060-1067, 1955.
    doi:10.1103/PhysRev.100.1060

    26. Morrish, A. H. and K. Haneda, "Magnetic structure of small NiFe2O4particles," J. Appl. Phys., Vol. 52, No. 3, 2496-2498, 1981.
    doi:10.1063/1.328979

    27. Nathani, H., S. Gubbala, and R. D. K. Misra, "Magnetic behavior of nickel ferrite-polyethylene nanocomposites synthesized by mechanical milling process," Materials Science and Engineering B, Vol. 111, 95-100, 2004.
    doi:10.1016/j.mseb.2004.03.002

    28. Lax, B., "Frequency and loss characteristics of microwave ferrite devices," Proc. IRE, Vol. 44, 1368-1386, Oct. 1956.

    29. Gerson, I. J. and J. S. Nandan, "Surface electromagnetic modes of a ferrite slab," IEEE Trans. on Microwave Theory and Tech., Vol. 22, No. 8, 757-763, Aug. 1974.
    doi:10.1109/TMTT.1974.1128332

    30. Tsutsumi, M. and S. Tamura, "Microstrip line filters using yttrium iron garnet film," IEEE Trans. on Microwave Theory and Tech., Vol. 40, No. 2, 400-402, Feb. 1992.
    doi:10.1109/22.120114

    31. Ishak, W. and K. W. Chang, "Tunable microwave resonators using magnetostatic wave in YIG films," IEEE Trans. on Microwave Theory and Tech., Vol. 34, No. 12, 1383-1393, Dec. 1986.
    doi:10.1109/TMTT.1986.1133553