Vol. 17
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-03-29
Equivalent Circuit Model for Designing Coupled Resonators Photonic Crystal Filters
By
Progress In Electromagnetics Research M, Vol. 17, 213-224, 2011
Abstract
A method for modeling and designing of coupled resonators photonic crystal (PC) filters for wavelength division multiplexing (WDM) systems is presented. This proposed method is based on coupling coefficients of intercoupled resonators and the external quality factors of the input and output resonators based on the circuit approach. A general formulation for extracting the two types of parameters from the physical structure of the PC filters is given. At last, we redesign a third-order Chebyshev filter which has a center frequency of 193.55 THz, a flat bandwidth of 50GHz, and ripples of 0.1 dB in the pass-band. The filter's structure derived from the proposed method is more compact.
Citation
Zuo-Xing Dai, Jia-Li Wang, and Yan Heng, "Equivalent Circuit Model for Designing Coupled Resonators Photonic Crystal Filters," Progress In Electromagnetics Research M, Vol. 17, 213-224, 2011.
doi:10.2528/PIERM11022201
References

1. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, "Photonic Crystal: Molding the Flow of Light ," Princeton Univ. Press, Princeton, 1995.

2. Yanik, M. F., H. Altug, J. Vuckovic, and S. Fan, "Submicrometer all-optical digital memory and integration of nanoscale photonic devices without isolator," IEEE J. Lightw. Techno., Vol. 22, 2316-2322, 2004.
doi:10.1109/JLT.2004.833811

3. Koshiba, M., "Wavelength division multiplexing and demultiplex-ing with photonic crystal waveguide coupler ," IEEE J. Lightw. Techno., Vol. 19, 1970-1975, 2001.
doi:10.1109/50.971693

4. Mekis, M. Meier, A. Dodabalapur, R. E. Slusher, and J. D. Joannopoulos, "Lasing mechanism in two dimensional photonic crystal lasers," Appl. Phys. A, Vol. 69, 111-114, 1999.
doi:10.1007/s003390050981

5. Yanik, M. F., S. Fan, M. Soljacic, and J. D. Joannopoulos, "All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry," Optics Letters, Vol. 28, 2506-2508, 2003.
doi:10.1364/OL.28.002506

6. Chen, J. C., H. A. Haus, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Optical filters from photonic band gap air bridges," IEEE J. Lightw. Techno., Vol. 14, 2575-2580, 1996.
doi:10.1109/50.548157

7. Imada, M., S. Noda, A. Chutinan, M. Mochizuki, and T. Tanaka, "Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide," IEEE J. Lightw. Techno., Vol. 20, 873-878, 2002.
doi:10.1109/JLT.2002.1007943

8. Costa, R., A. Melloni, and M. Martinelli, "Bandpass resonant filters in photonic-crystal waveguides," IEEE Photon. Techno. Letters, Vol. 15, 401-403, 2003.
doi:10.1109/LPT.2002.807953

9. Park, D., S. Kim, I. Park, and H. Lim, "Higher order optical resonant filters based on coupled defect resonators in photonic crystals," IEEE J. Lightw. Techno., Vol. 23, 1923-1928, 2005.
doi:10.1109/JLT.2005.846897

10. Li, X. C., J. Xu, K. Xu, A. Q. Liu, and J. T. Lin, "A side-coupled photonic crystal filter with sidelobe suppression," Appl. Phys. A, Vol. 89, 327-332, 2007.
doi:10.1007/s00339-007-4116-4

11. Haus, H. A., Wave and Fields in Optoelectronics, Prentice-Hall, Englewood Cliffs, NJ, 1984.

12. Fan, S., P. Villeneuve, and J. Joannopoulos, "Channel drop filters in photonic crystals," Opt. Express, Vol. 3, 4-11, 1998.
doi:10.1364/OE.3.000004

13. Chen, C., X. Li, H. Li, K. Xu, J. Wu, and J. Lin, "Bandpass filters based on phase-shifted photonic crystal waveguide gratings," Opt. Express, Vol. 15, 11278-11284, 2007.
doi:10.1364/OE.15.011278

14. Fasihi, K. and S. Mohammadnejad, "Highly efficient channel-drop filter with a coupled cavity-based wavelength-selective reflection feedback," Opt. Express, Vol. 17, 8983-8997, 2009.
doi:10.1364/OE.17.008983

15. Akahane, , Y., T. Asano, H. Takano, B. S. Song, Y. Takana, and S. Noda, "Two-dimensional photonic-crystal-slab channel-drop filter with flat-top response," Opt. Express, Vol. 13, 2512-2530, 2005.
doi:10.1364/OPEX.13.002512

16. Ashcroft, N. W. and N. D. Mermin, Solid State Physics, Saunders College, Philadelphia, 1976.

17. Kouwenhoven, L. P., C. M. Marcus, P. L. McEuen, S. Tarucha, R. M. Westervelt, and N. S. Wingreen, "Electron transport in quantum dots," Proceedings of the NATO Advanced Study Institute on Mesoscopic Electron Transport, Curacao, Netherlands, Antilles, 1996.

18. Mohtashami, A., J. Zarbakhsh, and K. Hingerl, "Advances impedance matching in photonic crystal waveguides," Opt. Quant. E, Vol. 39, 387-394, 2007.
doi:10.1007/s11082-007-9080-x

19. Biswas, R., Z. Y. Li, and K. M. Ho, "Impedance of photonic crystals and photonic crystal waveguides," App. Physics Letters, Vol. 84, 1254-1256, 2004.
doi:10.1063/1.1649815

20. Momeni, B., A. A. Eftekhar, and A. Adibi, "Effective impedance model for analysis of reflection at the interfaces of photonic crystals," Optics Letters, Vol. 32, 778-780, 2007.
doi:10.1364/OL.32.000778

21. Miri, M., A. Khavasi, K. Mehrany, and B. Rashidian, "Transimission-line model to design matching stage for light coupling into two-dimensional photonic crystals," Optics Letters, Vol. 35, 115-117, 2010.
doi:10.1364/OL.35.000115

22. Cameron, R. J., "General coupling matrix synthesis methods for chebyshev filtering functions," IEEE Trans. on MTT, Vol. 47, 433-442, 1999.
doi:10.1109/22.754877

23. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley and Sons, Inc., 2001.
doi:10.1002/0471221619.ch12

24., http://www.rsoftdesign.com/.