Vol. 13
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-08-17
Analysis of Characteristics of Two-Dimensional Runge-Kutta Multiresolution Time-Domain Scheme
By
Progress In Electromagnetics Research M, Vol. 13, 217-227, 2010
Abstract
In this paper the stability condition of the Runge-Kutta m-order multiresolution time-domain (RKm-MRTD) scheme has been studied. By analyzing the amplification factors, we derive the numerical dispersion relation of the RK-MRTD scheme. The numerical dispersive and dissipative errors are investigated. Finally, the theoretical predictions of the numerical errors are calculated through the numerical simulations.
Citation
Qunsheng Cao, and Xinlei Chen, "Analysis of Characteristics of Two-Dimensional Runge-Kutta Multiresolution Time-Domain Scheme," Progress In Electromagnetics Research M, Vol. 13, 217-227, 2010.
doi:10.2528/PIERM10070704
References

1. Krumpholz, M. and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 4, 555-571, Apr. 1996.
doi:10.1109/22.491023

2. Cao, Q., Y. Chen, and R. Mittra, "Multiple image technique (MIT) and anisotropic perfectly matched layer (APML) in implementation of MRTD scheme for boundary truncations of microwave structures," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 6, 1578-1589, Jun. 2002.
doi:10.1109/TMTT.2002.1006420

3. Zhu, X., T. Dogaru, and L. Carin, "Analysis of the CDF biorthogonal MRTD method with application to PEC targets," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 9, 2015-2022, Sep. 2003.
doi:10.1109/TMTT.2003.815874

4. Alighanbari, A. and C. D. Sarris, "Dispersion properties and applications of the Coifman scaling function based S-MRTD," IEEE Trans. Antennas and Propagation, Vol. 54, No. 8, 2316-2325, Aug. 2006.
doi:10.1109/TAP.2006.879194

5. Gottlieb, S., C.-W. Shu, and E. Tadmor, "Strong stability-preserving high-order time discretization methods," SIAM Rev., Vol. 43, No. 1, 89-112, 2001.
doi:10.1137/S003614450036757X

6. Chen, M.-H., B. Cockburn, and F. Reitich, "High-order RKDG methods for computational electromagnetics," J. Sci. Comput., Vol. 22-23, No. 1-3, 205-226, Jun. 2005.
doi:10.1007/s10915-004-4152-6

7. Cao, Q., R. Kanapady, and F. Reitich, "High-order Runge-Kutta multiresolution time-domain methods for computational electromagnetics ," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 8, 3316-3326, Aug. 2006.
doi:10.1109/TMTT.2006.879130

8. Liu, Y., "Fourier analysis of numerical algorithms for the Maxwell's equations," J. Comput. Phys., Vol. 124, 396-416, 1996.
doi:10.1006/jcph.1996.0068

9. Yefet, A. and P. G. Petropoulos, "A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations," Sci. Eng., Tech. Rep., Inst. Comput. Applicat, NASA/CR-1999n-209n514, 1999.

10. Shan, Z. and G. W. Wei, "High-order FDTD methods via derivative matching for Maxwell's equations with material interface," J. Comput. Phys., Vol. 200, No. 1, 60-103, Oct. 2004.

11. Sun, G. and C. W. Trueman, "Analysis and numerical experiments on the numerical dispersion of two-dimensional ADI-FDTD," IEEE Antenna and Wireless Propagation Lett., Vol. 2, No. 7, 78-81, 2003.