New formulas are presented for the reflection coefficient at the open end of a rectangular waveguide radiating into air including the effect of wall thickness or flange. Existing formulas require significant amount of numerical calculations and do not cover the practical range of waveguide dimensions. Reflection coefficients of open-ended standard waveguides are simulated using commercial electromagnetic software and curve-fitted to derive new formulas. Proposed formulas include the effects of waveguide wall thickness and broad-to-narrow wall aspect ratio. The accuracy of proposed formulas is compared with existing analytical, numerical and experimental results.
2. Selvan, K. T., "Studies on the classical gain approximations and the aperture-reflection coefficient of rectangular waveguide antennas," IEEE Trans. Electromag. Compat., Vol. 40, 343-347, 1998.
doi:10.1109/15.736220
3. Paramesha, S. and A. Chakraborty, "Waveguide as a near-field measuring probe of the two-element array radiator," Progress In Electromagnetics Research B, Vol. 7, 245-255, 2008.
doi:10.2528/PIERB08032401
4. Selvan, K. T. and V. Venkatesan, "A note on the aperture-reflection coefficient of open-ended rectangular waveguide," IEEE Trans. Electromag. Compat., Vol. 45, 663-664, 2003.
doi:10.1109/TEMC.2003.819069
5. Selvan, K. T., "Approximate formula for the phase of the aperture-reflection coefficient of open-ended rectangular waveguide," IEEE Trans. Antennas Propagat., Vol. 52, 318-321, 2004.
doi:10.1109/TAP.2003.822449
6. Gardiol, F. E., "Open-ended waveguides: Principles and applications," Advances in Electronics and Electron Physics, P. W. Hawes, Ed., Academic Press, London, Vol. 63, 139-187, 1985.
7. Hasar, U. C., "Permittivity determination of fresh cement-based materials by an open-ended waveguide probe using amplitude-only measurements ," Progress In Electromagnetics Research, Vol. 97, 27-43, 2009.
doi:10.2528/PIER09071409
8. Bhattacharya, A., S. Gupta, and A. Chakraborty, "Analysis of rectangular waveguides and thick windows as EMI sensors," Progress In Electromagnetics Research, Vol. 22, 231-258, 1999.
doi:10.2528/PIER98081002
9. Tan, W. and Z. Shen, "An accelerating technique for analyzing open-ended rectangular waveguides," Microwave Opt. Technol. Lett., Vol. 50, 1061-1066, 2008.
doi:10.1002/mop.23283
10. Bois, K. J., A. D. Benally, and R. Zoughi, "Multimode solution for the reflection properties of an open-ended rectangular waveguide radiating into a dielectric half-space: The forward and inverse problems," IEEE Trans. Instru. Measur., Vol. 48, 1131-1140, 1999.
doi:10.1109/19.816127
11. Bodnar, D. G. and D. T. Paris, "New variational principle in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 18, 216-223, 1970.
doi:10.1109/TAP.1970.1139642
12. Baudrand, H., J.-W. Tao, and J. Atechian, "Study of radiating properties of open-ended rectangular waveguides," IEEE Trans. Antennas Propagat., Vol. 36, 1071-1077, 1988.
doi:10.1109/8.7219
13. Shen, Z., C. L. Law, and R. H. MacPhie, "Application of anisotropic PML in mode-matching analysis of open-ended waveguides," IEEE Trans. Magnet., Vol. 38, 733-736, 2002.
doi:10.1109/20.996190
14. Chuang, C. W. and P. H. Pathak, "Ray analysis of modal reflection for three-dimensional open-ended waveguides," IEEE Trans. Antennas Propagat., Vol. 37, 339-346, 1989.
doi:10.1109/8.18730
15. Serizawa, H. and K. Hongo, "Radiation from a flanged rectangular waveguide," IEEE Trans. Antennas Propagat., Vol. 53, 3953-3962, 2005.
doi:10.1109/TAP.2005.859748
16. Das, S. and A. Chakrabarty, "A novel modeling technique to solve a class of rectangular waveguide based circuits and radiators," Progress In Electromagnetics Research, Vol. 61, 231-252, 2006.
doi:10.2528/PIER06010302