Vol. 12

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-05-03

Coupling Between an Irradiated Aperture and Monopole Antennas into a Complex Enclosure

By François Caudron, Achour Ouslimani, Rene Vezinet, Abed-elhak Kasbari, Jean-Luc Lavergne, and Jean-Sébastien Borrod
Progress In Electromagnetics Research M, Vol. 12, 155-164, 2010
doi:10.2528/PIERM10032405

Abstract

The coupling between an irradiated aperture and a monopole antenna into a complex enclosure is investigated. The aperture is realized at the one side of the enclosure and the monopole antenna at the other side. The proposed study uses Babinet's principle to extend the Random Coupling Model to determine the radiation impedance of apertures. An experimental study is carried out using a computer box as an enclosure. A high intensity external electromagnetic radiation is applied to the aperture. The induced voltages is measured along the monopole antenna. The simulated probability levels of the induced voltages agree well with the experimental ones.

Citation


François Caudron, Achour Ouslimani, Rene Vezinet, Abed-elhak Kasbari, Jean-Luc Lavergne, and Jean-Sébastien Borrod, "Coupling Between an Irradiated Aperture and Monopole Antennas into a Complex Enclosure," Progress In Electromagnetics Research M, Vol. 12, 155-164, 2010.
doi:10.2528/PIERM10032405
http://jpier.org/PIERM/pier.php?paper=10032405

References


    1. Hemmady, S. D., A wave chaotic approach to predicting and measuring electromagnetic field quantities in complicated enclosures, Ph.D. Thesis, Univ. of Maryland College Park, Maryland, 2005.

    2. Granatstein, V. L., et al., "Effects of hight power micro-waves and chaos in 21st century analog and digital electronics," AFOSR, MURI, MD 20743-3511, No. F496200110374, Institute for Research in Electronics and Applied Physics, Univ. of Maryland College Park, 2006.

    3. Hemmady, S. D., X. Zheng, J. Hart, T. M. Antonsen, E. Ott, and S. M. Anlage, "Universal properties of two-port scattering, impedance, and admittance matrices of wave-chaotic systems," Phys. Rev. E, Vol. 74, 2006.
    doi:10.1103/PhysRevE.74.036213

    4. Zheng, X., T. M. Antonsen, and E. Ott, "Statistics of impedance and scattering matrices in chaotic microwave cavities: Single channel case," Electromagnetics, Vol. 26, No. 1, 3-35, 2006.
    doi:10.1080/02726340500214894

    5. Zheng, X., T. M. Antonsen, and E. Ott, "Statistics of impedance and scattering matrices of chaotic microwave cavities with multiple ports ," Electromagnetics, Vol. 26, No. 1, 37-55, 2006.
    doi:10.1080/02726340500214902

    6. Hemmady, S. D., X. Zheng, E. Ott, T. M. Antonsen, and S. M. Anlage, "Universal impedance fluctuations in wave chaotic systems," Phys. Rev. Lett., Vol. 94, 2005.
    doi:10.1103/PhysRevLett.94.014102

    7. Newman, E. H., "The equivalent separation(s) for the self-impedance of thin strips," IEEE Trans. Antennas Propag., Vol. 35, No. 1, 110-113, 1987.
    doi:10.1109/TAP.1987.1143976

    8. Hemmady, S. D., X. Zheng, T. M. Antonsen, E. Ott, and S. M. Anlage, "Universal statistics of the scattering coefficient of chaotic microwave cavities ," Phys. Rev. E, Vol. 71, 2005.

    9. Balanis, C. A., Antenna Theory Analysis and Design, Wiley-Interscience, New York, 2005.

    10. Thourel, L., "Les Antennes," Dunod, Paris, 1956.

    11. Konefal, T., J. F. Dawson, A. C. Marvin, M. P. Robinson, and S. J. Porter, "A fast multiple mode intermediate level circuit model for the prediction of shielding effectiveness of a rectangular box containing a rectangular aperture," IEEE Trans. on Electromagnetic Compatibility, Vol. 47, No. 4, 2005.
    doi:10.1109/TEMC.2005.853715