Vol. 12

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-06-02

A Novel Phase Retrieval Approach for Electromagnetic Inverse Scattering Problem with Intensity-Only Data

By Yin Xiang, Lianlin Li, and Fang Li
Progress In Electromagnetics Research M, Vol. 12, 229-245, 2010
doi:10.2528/PIERM10030704

Abstract

To measure the phase of signal with very high working frequency such as THz, and optics band is still a challenging problem. In this paper, based on the relationship between radiating current and measured intensity of electrical field a novel phase retrieval algorithm has been developed. As opposed to the existing approaches of phase retrieval where usually the Fourier coefficients of measured data will be firstly reconstructed, the proposed approach is to reconstruct the so-called radiating currents, with more physical meaning than the former. It has a much smaller number of freedoms of radiating current than that of measurements, which means that the obtained equations are over-determined. Thus one can efficiently model the intensity of measured electric field via the radiating part, and reconstruct it quickly and stably. The novelty is that this physical consideration 1) leads to efficiently avoiding false solutions due to the ill-posedness of phase retrieval problem, and 2) offers a good initial guess for inverse scattering based imaging algorisms. Importantly, a closed-form formulation of phase retrieve also has been derived when the intensity of incident wave is much stronger than one of the scattered wave, for example, for the weak scattering objects. Finally, several numerical experiments are provided to show the high performance of proposed algorithm.

Citation


Yin Xiang, Lianlin Li, and Fang Li, "A Novel Phase Retrieval Approach for Electromagnetic Inverse Scattering Problem with Intensity-Only Data," Progress In Electromagnetics Research M, Vol. 12, 229-245, 2010.
doi:10.2528/PIERM10030704
http://jpier.org/PIERM/pier.php?paper=10030704

References


    1. Crocco, L., M. D'Urso, and T. Isernia, "Inverse scattering from phaseless measurements of the total field on a closed curve," J. Opt. Soc. Amer., Vol. 21, No. 4, 622-630, Apr. 2004.
    doi:10.1364/JOSAA.21.000622

    2. Bucci, O. M., L. Crocco, M. D'Urso, and T. Isernia, "Inverse scattering from phaseless measurements of the total field on open lines," J. Opt. Soc. Amer., Vol. 23, No. 10, 2566-2577, Oct. 2006.
    doi:10.1364/JOSAA.23.002566

    3. Catapano, I., L. Crocco, M. Urso, and T. Isernia, "Advances in microwave tomography phaseless measurements and layered backgrounds," Proc. 2nd Int. Workshop on Advanced GPR, Vol. 183, No. 188, Delft, The Netherlands, May 2003.

    4. Caorsi, S., A. Massa, M. Pastorino, and A. Randazzo, "Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm ," IEEE Trans. Geosci. Remote Sensing, Vol. 41, No. 12, 2745-2753, Dec. 2003.
    doi:10.1109/TGRS.2003.815676

    5. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach," IEEE Trans. Geosci. Remote Sensing, Vol. 44, No. 12, 3527-3539, Dec. 2006.
    doi:10.1109/TGRS.2006.881753

    6. Maleki, M. H., A. J. Devaney, and A. Schatzberg, "Tomographic reconstruction from optical scattered intensities," J. Opt. Soc. Am. A, Vol. 10, 1356-1363, 1992.
    doi:10.1364/JOSAA.9.001356

    7. Maleki, M. H. and A. J. Devaney, "Phase retrieval and intensity-only reconstruction algorithms from optical diffraction tomography," J. Opt. Soc. Am. A, Vol. 10, 1086-1092, 1993.
    doi:10.1364/JOSAA.10.001086

    8. Takenaka, T., D. J. N. Wall, H. Harada, and M. Tanaka, "Reconstruction algorithm of the refractive index of a cylindrical object from the intensity measurements of the total field," Microwave Opt. Technol. Lett., Vol. 10, 182-188, 1997.
    doi:10.1002/(SICI)1098-2760(19970220)14:3<182::AID-MOP15>3.0.CO;2-A

    9. Devaney, A. J., "Diffraction tomographic reconstruction from intensity data," IEEE Trans. Imaging Process, Vol. 1, 221-228, 1992.
    doi:10.1109/83.136598

    10. Maleki, M. H., A. J. Devaney, and A. Schatzberg, "Phase retrieval and intensity-only reconstruction algorithms from optical diffraction tomography," J. Opt. Soc. Am. A, Vol. 10, 1086-1092, 1993.
    doi:10.1364/JOSAA.10.001086

    11. Gbur, G. and E. Wolf, "Hybrid diffraction tomography without phase information," J. Opt. Soc. Am. A, Vol. 19, 2149-2202, 2002.

    12. Las-Heras, F. and T. Sarkar, "A direct optimization approach for source reconstruction and NF-FF transformation using amplitude-only data," IEEE Trans. Antennas. Propag., Vol. 50, No. 4, 500-510, Apr. 2002.
    doi:10.1109/TAP.2002.1003386

    13. Takenaka, T., D. J. N. Wall, H. Harada, M. Tanaka, and , "Reconstruction algorithm of the refractive index of a cylindrical object from the intensity measurements of the total field," Microwave Opt. Technol. Lett., Vol. 14, 182-188, 1997.
    doi:10.1002/(SICI)1098-2760(19970220)14:3<182::AID-MOP15>3.0.CO;2-A

    14. Caorsi, S., A. Massa, M. Pastorino, and A. Randazzo, "Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm," IEEE Trans. Geosci. Remote Sens., Vol. 41, 2745-2752, 2003.
    doi:10.1109/TGRS.2003.815676

    15. Li, L. L., H. Zheng, and F. Li, "Two-dimensional contrast source inversion method with phaseless data: TM case," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 6, 1719-1736, 2008.
    doi:10.1109/TGRS.2008.2006360

    16. Hislop, G., G. C. James, and A. Hellicar, "Phase retrieval of scattered fields," IEEE Trans. Antennas Propag., Vol. 55, 2332-2341, 2007.
    doi:10.1109/TAP.2007.901937

    17. Isernia, T., G. Leone, R. Pierri, and F. Soldovieri, "Role of the support and zero locations in phase retrieval by a quadratic approach," J. Opt. Soc. Am. A, Vol. 16, 1845-1856, 1999.
    doi:10.1364/JOSAA.16.001845

    18. Caorsi, S. and G. L. Gragnani, "Inverse-scattering method for dielectric objects based on the reconstruction of the nonmeasurable equivalent current density," Radio Science, Vol. 34, No. 1, 1-8, 1999.
    doi:10.1029/1998RS900009

    19. Chiappe, M. and G. L. Gragnani, "An analytical approach to the reconstruction of the radiating current in inverse electromagnetic scattering," Microwave Opt. Technol. Lett., Vol. 49, No. 2, 354-360, 2007.
    doi:10.1002/mop.22125

    20. Geffrin, J., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision ," Inverse Problems, Vol. 21, S117-S130, 2005.
    doi:10.1088/0266-5611/21/6/S09

    21. Xiang, Y., L. L. Li, and F. Li, "Inversion of phaseless total data by reconstruction the equivalent radiating current," 2008 Asia-Pacific Microwave Conference, (APMC 2008), 2008.